On 3-choosability of plane graphs without 3-, 8- and 9-cycles

ZHU XIAOYING* LIANYING MIAO WANG CUIQI

Department of Mathematics
China University of Mining and Technology
Xuzhou, 221008
P.R. China
zhuxy1979@163.com

Abstract

Steinberg (Annals Discr. Math. 55 (1993), 211–248) asked whether every planar graph without 4 and 5 cycles is 3-colorable. Borodin (J. Graph Theory 21(2) (1996), 183–186) showed that every planar graph without any cycles of length between 4 and 9 is 3-colorable. We improve this result by showing that every plane graph, which contains no triangles and contains no 8- and 9-cycles, is 3-choosable.

1 Introduction

In this paper, we consider only finite and simple graphs. Undefined terms may be found in [2]. Suppose k is a integer. Then k^+ and k^- denote integers $\geq k$ and $\leq k$, respectively. A vertex u is called a k-vertex if $d_G(u) = k$. A face f is called a k-face if $d_G(f) = k$. If no confusion can arise, d(v) and d(f) will be used instead of $d_G(v)$ and $d_G(f)$. A face of a plane graph is incident with all edges and vertices on its boundary. Two faces are adjacent if they have an edge in common. A k-cycle is a cycle on k vertices. The set of all k-cycles of k is denoted by k-cycle is called k-free if k

An h-face f is called a light h-face if all incidental vertices are 3^- -vertices; otherwise a non-light h-face if it is incident with at least one 4^+ -vertex. An h-face is called a minimal h-face if it lies on exactly one 4-vertex and 3^- -vertex on other vertices; similarly, an h-face is called a non-minimal h-face if it lies on at least two 4^+ -vertices.

A list coloring of G is an assignment of colors to V(G) such that each vertex v receives a color from a prescribed list L(v) of colors and adjacent vertices receive

^{*} Research supported by Foundation of China University of Mining and Technology, No. A200403.

distinct colors (see [10]). $L(G) = \{L(v) \mid v \in V(G)\}$ is called a color list of G. The graph G is called k-choosable if G admits a list coloring for all color lists L with k colors in each list. Steiberg [7] asked whether every planar graph without 4 and 5 cycles is 3-colorable. Borodin [3] showed that every planar graph without any cycles of length between 4 and 9 is 3-colorable. Their results can easily be extended to choosability instead of colorability.

All 2-choosable graphs have been characterized by Erdős et al. [4]. In [8], Thomassen proved that every plane graph is 5-choosable. Voigt [11] showed that there are planar graphs which are not 4-choosable. It remains to decide whether a given plane graph is 4- or 3-choosable. Gutner [5] proved that these problems are NP-hard. So far, some sufficient conditions have been obtained and some constructions have been found. Alon and Tarsi [1] proved that every plane bipartite graph is 3-choosable. Thomassen [9] proved that every plane graph of girth at least 5 is 3-choosable. Lam[6] proved that every planar graph with girth at least 4 and without 5- and 6-cycles is 3-choosable. Zhang [12] proved that every plane graph with girth at least 4 and containing no 5-, 8- and 9-cycles is 3-choosable. In this paper, we will study a similar problem, the 3-choosability of graphs without 3-cycles. We show that if G contains no triangles and contains no 8-and 9- cycles, then G is 3-choosable.

2 Preliminaries

Before stating the main theorems, we shall first state the following necessary lemmas.

Lemma 1 [4] Every cycle of even length is 2-choosable.

Lemma 2 [12] Let G be a non-3-choosable graph such that for any proper subset $V^* \subset V$, $G[V^*]$ is 3-choosable. Then any 2n-cycle of G contains at least one 4^+ -vertex.

Lemma 3 [12] Let G be a non-3-choosable graph such that for any proper subset $V^* \in V$, $G[V^*]$ is 3-choosable. If C_1 and C_2 are two 4-cycles with exactly one common vertex v_0 , then at least one of C_1 and C_2 is a non-minimal cycle.

3 Proof of the Main Theorem

Theorem 1 Let G be a plane graph of girth not less than 4. If G contains no 8-and 9-cycles, then G is 3-choosable.

Proof Suppose that G is a counterexample of minimum order. Then it is easy to see that δ (G) \geq 3. We assign a weight of $\sigma(x) = \frac{3d(x)}{10} - 1$ to each $x \in V(G)$, and $\sigma(x) = \frac{d(x)}{5} - 1$ to each $x \in F(G)$. Then by Euler's formula we have:

$$\sum_{v \in V(G)} (\frac{3d(v)}{10} - 1) + \sum_{f \in F(G)} (\frac{d(f)}{5} - 1) = -2. \quad (1)$$

if we obtain a new weight $\sigma^*(x)$ for all $x \in V \cup F$ by transferring weights from one element to another, then we also have $\sum_{x \in V \cup F} \sigma^*(x) = -2$. Moveover, if $\sigma^*(x) \geq 0$ for all $x \in V \cup F$, then the theorem is proved. A 4-face f is called a 4_i -face, for i = 0, 1 or 2, if f is adjacent to exactly i 4-faces. Weights will be transferred according to the following rules:

- (R_1) From each 4- or 5⁺-vertex to each incident 4-face, transfer $\frac{1}{10}$ or $\frac{1}{6}$ respectively.
- (R_2) From each face to each incident 3-vertex, transfer $\frac{1}{30}$.
- (R_3) From each 10⁺-face to each adjacent 4-face which is called f', transfer:
 - (R_{31}) $\frac{1}{10}$ if f' is a minimal 4-face;
 - (R_{32}) $\frac{1}{15}$ if f' is a 4-face incident with one 5⁺-vertex and three 3-vertices;
 - (R_{33}) $\frac{1}{15}$ if f' is a 4-face incident with two 4-vertices and adjacent to three nonadjacent 5-faces;
 - (R_{34}) $\frac{1}{30}$ otherwise.
- (R_4) From each 10^+ -face to each adjacent light 5-face transfer $\frac{7}{120}$.
- (R_5) From each 10^+ -face to each adjacent non-light 5-face transfer $\frac{1}{20}$.
- (R_6) From each 7-face to each adjacent 5-face transfer $\frac{1}{20}$.

We shall make the following observations. Since G contains no 8- and 9-cycles, it follows that

- (O_1) a 4-face is adjacent to at most two 4-faces;
- (O_2) neither a 6-face nor a 7-face is adjacent to another 4-face;
- (O_3) a 5-face is adjacent to at most two adjacent 4-faces;
- (O_4) neither a 6-face nor a 5-face is adjacent to another 5-face.

Let v be a k- vertex of G.

If k=3, then v is incident with three faces. Therefore according to R_2 , $\sigma^*(v)=\sigma(v)+\frac{3}{30}=0$.

If k=4, then the total number of 4-faces incident with v is at most 2. According to R_1 , $\sigma^*(v) \geq \sigma(v) - \frac{2}{10} = 0$. If $k \geq 5$, then at least two faces incident with v are not 4-faces. Therefore according to R_1 , $\sigma^*(v) \geq \sigma(v) - \frac{k-2}{6} = \frac{2k-10}{15} \geq 0$.

Let f be an h-face of G. $(h = 4, 5, 6, 7, 10^+)$.

First consider the case where h = 4.

By O_1 and O_2 , f is adjacent only to 4-, 5- or 10^+ -faces. And by Lemma 2, f is incident with at least one 4^+ -vertex. Because transferring only happens from an adjacent 10^+ -face to the 4-face, we must consider the condition when the number

of adjacent 10⁺-faces is as small as possible. This condition is considered the worst case.

Suppose f is a minimal 4-face.

If f is a 42-face, then f must be adjacent to two 10⁺-faces; also by R_{31} , R_1 , R_2 , $\sigma^*(f) = \sigma(f) + \frac{1}{10} - \frac{3}{30} + \frac{2}{10} = 0$.

If f is a 4₁-face, then at least two 10⁺-faces are adjacent to f; also by R_{31} , R_1 , R_2 , $\sigma^*(f) \geq \sigma(f) + \frac{1}{10} - \frac{3}{30} + \frac{2}{10} = 0$.

If f is a 4₀-face, then at most two disjoint 5-faces are adjacent to f and the other two faces are 10^+ -faces. Hence by R_{31} , R_1 , R_2 , $\sigma^*(f) \ge \sigma(f) + \frac{1}{10} - \frac{3}{30} + \frac{2}{10} = 0$.

Suppose f is incident with one 5⁺-vertex and three 3-vertices; then by the above analysis and by R_{32} , R_1 , R_2 , $\sigma^*(f) \geq \sigma(f) + \frac{1}{6} - \frac{3}{30} + \frac{2}{15} = 0$.

Suppose f is incident with two 4^+ -vertices and two 3-vertices. When f is a 4_1 -face or a 4_2 -face, f is adjacent to at least two 10^+ -faces. Hence by R_{34} , R_1 , R_2 , $\sigma^*(f) \geq \sigma(f) + \frac{2}{10} - \frac{2}{30} + \frac{2}{30} = 0$. If f is a 4_0 -face, then the worst condition is that f is adjacent to three 5-faces and one 10^+ -face. Hence by R_{33} , R_1 , R_2 , $\sigma^*(f) \geq \sigma(f) + \frac{2}{10} - \frac{2}{30} + \frac{1}{15} = 0$.

Finally, we assume that f is incident with at least three 4^+ -vertices. Even if no weight is transferred to f across the four faces, we also have

$$\sigma^*(f) \ge \sigma(f) + \frac{3}{10} - \frac{1}{30} > 0.$$

Consider h = 5.

By O_3 and O_4 , f is adjacent only to 4-, 7- or 10^+ -faces and f is adjacent to at most two 4-faces on two consecutive edges, otherwise G is not C_9 -free.

Suppose f is a light 5-face. Because the weight, transferred to f from an adjacent 10^+ -face, is more than the weight transferred from an adjacent 7-face, we also should consider 7-faces as much as possible. If f is adjacent to two 4-faces, then at most one 7-face is adjacent to f. Hence by $R_6, R_4, \sigma^*(f) \geq \sigma(f) + \frac{1}{20} - \frac{5}{30} + 2 \cdot \frac{7}{120} = 0$. If f is adjacent to at most one 4-face, then it is clear that $\sigma^*(f) \geq 0$.

Now we assume that f is a non-light 5-face. Since at most two 4-faces are adjacent to f and the other three then are 7⁺-faces, hence by R_6, R_5, R_2 , $\sigma^*(f) \ge \sigma(f) - \frac{4}{30} + \frac{3}{20} > 0$.

Consider h=6. Then at least one 4⁺-vertex is incident with f by Lemma 2. So $\sigma^*(f) \geq \sigma(f) - \frac{5}{30} = \frac{1}{5} - \frac{1}{6} > 0$.

Consider h = 7.

If f is a light 7-face, the weights are transferred from f to at most three 5-faces, according to R_6 . So $\sigma^*(f) \ge \sigma(f) - \frac{7}{30} - 3 \cdot \frac{1}{20} > 0$.

On the other hand, if f is a non-light 7-face, suppose there are r 5-faces adjacent to f (4 $\leq r \leq$ 7). Then at most (14 - 2r) 3-vertices are incident with f. So $\sigma^*(f) \geq \sigma(f) - \frac{14-2r}{30} - \frac{r}{20} = \frac{5r-20}{300} \geq 0$. $(r \geq 4)$.

Now consider $h \ge 10$. In this case, to each vertex and edge on the boundary of f, we assign a quota of $\frac{1}{30}$ and $\frac{1}{15}$ respectively. By the discharging rules, f transfers the weights not only to 3-vertices on the boundary of f, but also to 4-faces and 5-faces adjacent to it. For each 4^+ -vertex v on the boundary of f, the quota assigned to v can be donated to the edges incident with v on the boundary of f. If these quotas are enough to cover all transfers to incident vertices and adjacent 4- and 5-faces then

$$\sigma^*(f) \ge \sigma(f) - \frac{h}{30} - \frac{h}{15} \ge 0$$

and proof of the Theorem is completed.

Let xt, tu, uv, vw and wy be five consecutive edges of a 10^+ -face f. Also let f_3, f_1, f', f_2 and f_4 be the faces adjacent to f at xt, tu, uv, vw and wy respectively. Let s be the weight transferred from f to f' across uv. By the discharging rules, f transfers the weights to 3-vertices on the boundary of f, also to 4-faces and 5-faces adjacent to it. So we assume that f' is a 4-face or a 5-face. Because we assigned $\frac{1}{15}$ to each edge on the boundary of f, if the situation which happens is $R_{32}, R_{33}, R_{34}, R_4, R_5$, then $s \leq \frac{1}{15}$. So we only need to consider the situation when f' is a minimal 4-face. Now there are the following situations.

Case 1: if u and v are 3- and 4- vertices respectively, the worst condition is that f_1 is a 4-face. Then by Lemma 3, f_2 is not a minimal face, and the weight transferred across vw is at most $\frac{1}{15}$ by R_{32} , R_{33} , R_{34} , R_4 and R_5 . So $\frac{1}{30}$, which is the unused quota for the vertex v, may be donated to uv. Therefore, the quota of uv is adjusted to $\frac{1}{15} + \frac{1}{30} = \frac{1}{10} = s$ by R_{31} . The same conclusion holds if u and v are 4- and 3-vertices respectively.

Case 2: if both u and v are 3-vertices, then f' is adjacent to both f_1 and f_2 .

Now assuming that f_1 is a 4-face, then f_2 must be a 10^+ -face. So the weight transferred from f across vw is 0. And $\frac{1}{30}$, half of the unused quota of vw, may be donated to uv, adjusting its quota to $\frac{1}{15} + \frac{1}{30} = \frac{1}{10} = s$ by R_{31} . The same conclusion holds if f_2 is a 4-face.

It is clear that if either f_1 or f_2 is a 10^+ -face, then by the same argument as above, $\frac{1}{30}$, which is half of the unused quota of vw or tu, may be donated to uv. Consequently, the quota of uv is adjusted to $\frac{1}{15} + \frac{1}{30} = \frac{1}{10} = s$ by R_{31} .

Assume that either f_1 or f_2 is a light 5-face. Without loss of generality, assuming that f_1 is a light 5-face, then f_2 is a 10⁺-face or a 5-face. If f_2 is a 10⁺-face, then the argument is the same as above. Otherwise, if f_2 is a 5-face, because f_1 is a light 5-face and t is a 3-vertex, then f_3 adjacent to f_1 must be a 10⁺-face. So the weight transferred from f across xt is 0. And $\frac{1}{30}$, half of the unused quota of xt, may be donated to uv, adjusting its quota to $\frac{1}{15} + \frac{1}{30} = \frac{1}{10} = s$ by R_{31} .

If f_1 and f_2 are non-light 5-faces, then the weights transferred across tu and vw are both at most $\frac{1}{20}$ by R_5 . And neither f_1 nor f_2 is adjacent to a 4-face at xt and wy. So, $\frac{1}{15} - \frac{1}{20}$, the remaining quota of the edge tu, need not be given to xt, and $\frac{1}{15} - \frac{1}{20}$, the remaining quota of vw, also need not be given to wy. Both of the

remaining quotas should be donated to uv. Consequently, the quota of uv is adjusted to $\frac{1}{15} + 2 \cdot (\frac{1}{15} - \frac{1}{20}) = \frac{1}{10} = s$ by R_{31} .

In all of the above cases, the weight transferred across uv is less than or equal to the adjusted quota. Now, we get that $\sigma^*(x) \geq 0$ for each $x \in V \cup F$. It follows that

$$0 \le \sum_{x \in V \bigcup F} \sigma^*(x) = -2.$$

This completes the proof.

References

- [1] N. Alon and M. Tarsi, Colorings and orientations of graphs, *Combinatorica* 12 (2) (1992), 125–134.
- [2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, Macmillan, London, 1976.
- [3] O.V. Borodin, Structural properties of plane graphs without adjacent triangles and an application to 3-colorings, J. Graph Theory 21(2) (1996), 183–186.
- [4] P. Erdős, A.L. Rubin and H. Taylor, Choosability in graphs, Congressus Numer. 26 (1979), 125–157.
- [5] S. Gutner, The complexity of planar graph choosability, Discrete Math. 159 (1996), 119-130.
- [6] P.C.B. Lam, The 3-choosability of plane graphs of girth 4, Discrete Math. 294 (2005), 297–301.
- [7] R. Steiberg, The state of the three color problem, Annals Discrete Math. 55 (1993), 211–248.
- [8] C. Thomassen, Every planar graph is 5-choosable, J. Combin. Theory Ser. B 62 (1994), 180–181.
- [9] C. Thomassen, 3-list-coloring planar graphs of girth 5, J. Combin. Theory Ser. B 64 (1995), 101–107.
- [10] V.G. Vizing, Vertex coloring with given colors, *Diskret Anal.* 29 (1976), 3–10 (in Russian).
- [11] M. Voigt, List colouring of planar graphs, Discrete Math. 120 (1993), 215–219.
- [12] H. Zhang, On 3-choosability of plane graphs without 5-, 8- and 9-cycles, J. Lanzhou University (Natural Sciences) 41 (2005), 93–97.

(Received 22 May 2006; revised 22 Jan 2007)