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Abstract

Steinberg (Annals Discr. Math. 55 (1993), 211-248) asked whether every
planar graph without 4 and 5 cycles is 3-colorable. Borodin (J. Graph
Theory 21(2) (1996), 183-186) showed that every planar graph without
any cycles of length between 4 and 9 is 3-colorable. We improve this
result by showing that every plane graph, which contains no triangles
and contains no 8- and 9-cycles, is 3-choosable.

1 Introduction

In this paper, we consider only finite and simple graphs. Undefined terms may be
found in [2]. Suppose k is a integer. Then At and &~ denote integers > k and < k,
respectively. A vertex u is called a k-vertex if dg(u) = k. A face f is called a k-face
if dg(f) = k. If no confusion can arise, d(v) and d(f) will be used instead of dg(v)
and dg(f). A face of a plane graph is incident with all edges and vertices on its
boundary. Two faces are adjacent if they have an edge in common. A k-cycle is a
cycle on k vertices. The set of all k-cycles of G is denoted by C}. A graph is called
Cy-free if Cj, = (). The girth of G is the length of a shortest cycle of G.

An h-face f is called a light h-face if all incidental vertices are 3~ -vertices; other-
wise a non-light h-face if it is incident with at least one 47-vertex. An h-face is called
a minimal h-face if it lies on exactly one 4-vertex and 3~ -vertex on other vertices;
similarly, an h-face is called a non-minimal h-face if it lies on at least two 4*-vertices.

A list coloring of G is an assignment of colors to V(G) such that each vertex v
receives a color from a prescribed list L(v) of colors and adjacent vertices receive
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distinct colors (see [10]). L(G) = {L(v) | v € V(G)} is called a color list of G. The
graph G is called k-choosable if G admits a list coloring for all color lists L with k
colors in each list. Steiberg [7] asked whether every planar graph without 4 and 5
cycles is 3-colorable. Borodin [3] showed that every planar graph without any cycles
of length between 4 and 9 is 3-colorable. Their results can easily be extended to
choosability instead of colorability.

All 2-choosable graphs have been characterized by Erd6s et al. [4]. In [8], Thoma-
ssen proved that every plane graph is 5-choosable. Voigt [11] showed that there are
planar graphs which are not 4-choosable. It remains to decide whether a given plane
graph is 4- or 3-choosable. Gutner [5] proved that these problems are NP-hard. So
far, some sufficient conditions have been obtained and some constructions have been
found. Alon and Tarsi [1] proved that every plane bipartite graph is 3-choosable.
Thomassen [9] proved that every plane graph of girth at least 5 is 3-choosable.
Lam[6] proved that every planar graph with girth at least 4 and without 5- and
6-cycles is 3-choosable. Zhang [12] proved that every plane graph with girth at least
4 and containing no 5-, 8- and 9-cycles is 3-choosable. In this paper, we will study
a similar problem, the 3-choosability of graphs without 3-cycles. We show that if G
contains no triangles and contains no 8-and 9- cycles, then G is 3-choosable.

2 Preliminaries

Before stating the main theorems, we shall first state the following necessary lemmas.
Lemma 1 [4] Every cycle of even length is 2-choosable.

Lemma 2 [12] Let G be a non-3-choosable graph such that for any proper subset
V* C V, G[V*] is 3-choosable. Then any 2n-cycle of G contains at least one 4% -
vertex.

Lemma 3 [12] Let G be a non-3-choosable graph such that for any proper subset
V* e V, G[V*] is 3-choosable. If Cy and Cy are two 4-cycles with exactly one common
vertex vy, then at least one of C, and Cy is a non-minimal cycle.

3 Proof of the Main Theorem

Theorem 1 Let G be a plane graph of girth not less than 4. If G contains no 8-and
9-cycles, then G is 3-choosable.

Proof Suppose that G is a counterexample of minimum order. Then it is easy to
see that 6 (G)> 3. We assign a weight of o(z) = %(0’7) — 1 to each z € V(G), and
o(z) = @ — 1 to each © € F(G). Then by Euler’s formula we have :

> A ey @Dy
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if we obtain a new weight o*(z) for all z € V' U F by transferring weights from one
element to another, then we also have ,¢y )y 0" (2) = —2. Moveover, if o*(z) > 0
forallz € VU F, then the theorem is proved. A 4-face f is called a 4;-face, fori = 0,1
or 2, if f is adjacent to exactly i 4-faces. Weights will be transferred according to
the following rules:

(Ry) From each 4- or 57 -vertex to each incident 4-face, transfer 5 or ¢ respectively.

(Ry) From each face to each incident 3-vertex, transfer .

(R3) From each 107-face to each adjacent 4-face which is called f', transfer:

(Ry1) & if £ is a minimal 4-face;
(R32) % if ' is a 4-face incident with one 5t-vertex and three 3-vertices;

(Rs3) % if f’ is a 4-face incident with two 4-vertices and adjacent to three
nonadjacent 5-faces;

(Rs4) % otherwise.
(R4) From each 107-face to each adjacent light 5-face transfer Z.

(Rs5) From each 10™-face to each adjacent non-light 5-face transfer 5.

1

(Re) From each 7-face to each adjacent 5-face transfer 5;.

We shall make the following observations. Since G contains no 8- and 9-cycles, it
follows that

(O1) a 4-face is adjacent to at most two 4-faces;
(Os) neither a 6-face nor a 7-face is adjacent to another 4-face;
(Os3) a 5-face is adjacent to at most two adjacent 4-faces;
(Oy4) neither a 6-face nor a 5-face is adjacent to another 5-face.
Let v be a k- vertex of G.
If k = 3, then v is incident with three faces. Therefore according to Rs, o*(v) =
o(v)+ 2 =0.
If k = 4, then the total number of 4-faces incident with v is at most 2. According

to Ry, 0*(v) > o(v) — % = 0. If k > 5, then at least two faces incident with v are

not 4-faces. Therefore according to Ry, 0*(v) > o(v) — ¥22= 2210 > ¢,
Let f be an h-face of G. (h =4,5,6,7,107).
First consider the case where h = 4.

By O; and O,, f is adjacent only to 4-, 5- or 10*-faces. And by Lemma 2, f
is incident with at least one 4*-vertex. Because transferring only happens from an
adjacent 10%-face to the 4-face, we must consider the condition when the number
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of adjacent 10T -faces is as small as possible. This condition is considered the worst
case.

Suppose f is a minimal 4-face.

If f is a 4,-face, then f must be adjacent to two 10T-faces; also by Ra;, Ri, Ry,
o (f)=o0(f)++-5+5=0.

If f is a 4,-face, then at least two 10T -faces are adjacent to f; also by Rs;, Ry, R,
o (f)zof)+5-5%+i5=0

If f is a 4¢-face, then at most two disjoint 5-faces are adjacent to f and the other
two faces are 10™-faces. Hence by Ry1, Ri, Ry, 0*(f) > 0(f) + 5 — = + 55 = 0.

Suppose f is incident with one 5T-vertex and three 3-vertices; then by the above
analysis and by Rsy, Ri, Ry, o*(f) 2 o(f)++t— 5+ & =0.

Suppose f is incident with two 4T-vertices and two 3-vertices. When f is a
4,-face or a 4y-face, f is adjacent to at least two 10%-faces. Hence by Rs4, Ry, R,
o'(f) 2 o(f)+ 5 — % +% = 0. If fisa do-face, then the worst condition is
that f is adjacent to three 5-faces and one 107-face. Hence by Rss, Ri, Rs, o*(f) >
o(f)+ 55—+ =0

Finally, we assume that f is incident with at least three 4™-vertices. Even if no
weight is transferred to f across the four faces, we also have

Consider h = 5.

By O3 and Oy, f is adjacent only to 4-, 7- or 10T —faces and f is adjacent to at
most two 4-faces on two consecutive edges, otherwise G is not Co-free.

Suppose f is a light 5-face. Because the weight, transferred to f from an adjacent
10" -face, is more than the weight transferred from an adjacent 7-face, we also should
consider 7-faces as much as possible. If f is adjacent to two 4-faces, then at most
one 7-face is adjacent to f. Hence by Re, Ry, 0*(f) > 0(f) + 55 — o5 +2- 135 = 0. If
f is adjacent to at most one 4-face, then it is clear that o*(f) > 0.

Now we assume that f is a non-light 5-face. Since at most two 4-faces are adjacent
to f and the other three then are 7*-faces, hence by Re, Rs, Ry , 0*(f) > o(f) — 55+
= > 0.

Consider h = 6. Then at least one 4%-vertex is incident with f by Lemma 2. So
(flzo(f)—xm=5-5>0

Consider h = 17.

If f is a light 7-face, the weights are transferred from f to at most three 5-faces,

according to Rg. So 0*(f) > o(f) — 55 — 3+ 55 > 0.

On the other hand, if f is a non-light 7-face, suppose there are r 5-faces adjacent
to f (4 < r < 7). Then at most (14 — 2r) 3-vertices are incident with f. So

o (f)zo(f) - 55— 5 =5 20 (r>4).
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Now consider A > 10. In this case, to each vertex and edge on the boundary of f,
we assign a quota of % and % respectively. By the discharging rules, f transfers the
weights not only to 3-vertices on the boundary of f, but also to 4-faces and 5-faces
adjacent to it. For each 47-vertex v on the boundary of f, the quota assigned to v
can be donated to the edges incident with v on the boundary of f. If these quotas
are enough to cover all transfers to incident vertices and adjacent 4- and 5-faces then

h h

() 2ol =55~ 1 20

and proof of the Theorem is completed.

Let at, tu, uv, vw and wy be five consecutive edges of a 10T-face f. Also let
fs, fi, ', f» and fs be the faces adjacent to f at xt, tu, uv, vw and wy respectively.
Let s be the weight transferred from f to f  across uwv. By the discharging rules,
f transfers the weights to 3-vertices on the boundary of f, also to 4-faces and 5-
faces adjacent to it. So we assume that f is a 4-face or a 5-face. Because we
as51gned  to each edge on the boundary of f, if the situation which happens is
R3y, Ras, R34, R4, Rs, then s < 115. So we only need to consider the situation when f'
is a minimal 4-face. Now there are the following situations.

Case 1: if u and v are 3- and 4- vertices respectively, the worst condition is that
f11s a 4-face. Then by Lemma 3, fo is not a minimal face, and the weight transferred
across vw is at most ¢ by Rs3s, R33, R34, Ry and Rs. So %, which is the unused
quota for the vertex v, may be donated to uv. Therefore, the quota of uv is adjusted

to & + 35 = 75 = 5 by Ra1. The same conclusion holds if v and v are 4- and 3-

vertices respectively.
Case 2: if both u and v are 3-vertices, then f' is adjacent to both f, and fo.

Now assuming that f; is a 4-face, then fo must be a 10%-face. So the weight
transferred from f across vw is 0. And 35, half of the unused quota of vw, may be
donated to uv, adjusting its quota to li + 310 = 10 = s by R3;. The same conclusion
holds if f, is a 4-face .

It is clear that if either f; or f, is a 10"-face, then by the same argument as
above, %, which is half of the unused quota of vw or tu may be donated to uv.
Consequently, the quota of uv is adjusted to % + 31—0 = 10 = s by Rs;.

Assume that either f; or fy is a light 5-face. Without loss of generality, assuming
that f is a light 5-face, then f, is a 10T-face or a 5-face. If f, is a 107 -face, then
the argument is the same as above. Otherwise, if f; is a 5-face, because f; is a light
b-face and t is a 3-vertex, then f3 adjacent to fi must be a 10*-face. So the weight
transferred from f across xt is 0. And 30, half of the unused quota of xt, may be
donated to wv, adjusting its quota to 15 + % = =5 by Rs.

If f; and f, are non light 5-faces, then the weights transferred across tu and vw
are both at most 55 by Rs. And neither f; nor f; is adjacent to a 4-face at xt
and wy. So L the remaining quota of the edge tu, need not be given to xt,

v 15 20’
and % the remaining quota of vw, also need not be given to wy. Both of the

10

- 20’
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remaining quotas should be donated to uv. Consequently, the quota of uv is adjusted

o5 +2- (- %) = & = s by Ry

In all of the above cases, the weight transferred across uv is less than or equal to
the adjusted quota. Now, we get that o*(x) > 0 for each v € VU F. It follows that

0< Y of(x) = -2

zeV U F
This completes the proof.
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