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Abstract

A non-isolated vertex of a graph is called a groupie if the average degree
of the vertices adjacent to it is larger than or equal to the average degree
of all vertices in the graph. An isolated vertex is a groupie only if the
graph has no edges. Mackey (1996) proved that any graph with at least
two vertices contains at least two groupies. In this note we show that if
a graph has a vertex of degree at least two, then the graph contains two
distinct groupies with a common neighbour.

1 Introduction

A non-isolated vertex of a graph G is called a groupie if the average degree of the
vertices adjacent to it is large than or equal to the average degree of the vertices in
G. An isolated vertex is a groupie only if all vertices of G are isolated.

The concept of groupie was first used by Ajtai, Komlds, and Szemerédi [1] to
obtain an upper bound for the Ramsey number R(3,k). Later, in [2], Bertram,
Erdés, Hordk, Siran, and Tuza conjectured that there exist at least two groupies in
any graph with at least two vertices and proved this in some special cases. This
conjecture was completely settled by Mackey in [3].

In this note, using a technique similar to the one in [3], we show that if G has
three or more vertices and has no isolated vertices, then G contains a pair of distinct
groupies with a common neighbour. In particular, if G has two groupies at distance
at least three, then GG has at least three groupies.
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2 Results

Let G be a graph with vertex set V. Let G be the set of groupies in G and let g = |G].
For v € V, let d, be the degree of v and g, be the number of groupies adjacent to
v. Let d be the average degree of G, that is, d = 3 ., d,/[V|. Let V* and V-

denote the sets of vertices with degree greater than d and less than d respectively.
For u,v € V, we denote by dg(u,v) the distance between u and v in G. Finally, for
u,v € V, let
1, if u is adjacent to v;
X(u,v) = { 0, otherwise.

Following a similar proof of the main theorem in [3], we have:

Theorem 2.1. If G has a non-groupie of positive degree, then

9> (d=df + Y (9-g)(d, =)/ Y (d, - d).

veV vevVt veVt

Proof. Let 1 =Y ,(dy, — d)*. Since 3",/ (dy — d) = 0, we have
1= ddy—d)—dY (dy—d) = dy(dy—d). (1)
veV veV veV

Replacing d, with (d, — g,) + g, in (1), we have
l=10+1, (2)

where I =3 - (d, — go)(dy — 3) and Iy =3 oy 9o(dy — E).

For [y, since d, — g, is the number of non-groupies adjacent to v, we can write
dy = gu = 3,y \g X(u,v) which shows that

h=> > x(uv)(d, —d). (3)

veV ueV\g

Now we interchange the summation in (3) to get

L= Z (Z x(u,v)d, — EZ x(u,v)). (4)

ueV\g veV veV

By the fact that ) ., x(u,v)) = dy, (4) becomes

h= > O x(uv)d, —dd,). (5)

ueV\G veV

Note also that Y i, x(u,v)d, is the sum of the degrees of the vertices adjacent to
u. If w € V\G with positive degree, then > ., x(u,v)d, < dyd. Since we have
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assumed that G has non-groupies of positive degree, that is, there exists u € V\G
with positive degree, (5) implies that

I, <0. (6)
For Iy, note that for any v € V~, d, < d, we have g,(d, — d) < 0. Therefore,
lZ S Z gv(dv - E) (7)
veV T
Replacing g, by (g, — ¢9) + g in (7), we obtain

ZZS Z(gv_g)(dv_a)+92(dv_8)' (8)

veEVH veV+
Combining (2), (6) and (8), we have
Z(dv—a)Z < Z(gv—g)(dv—a)-i—g Z(dv—a)' (9)
veV vevt veV+

Note that G cannot be regular, otherwise there does not exist a non-groupie of

positive degree. Thus V™ is non-empty and we may divide (9) by >° oy +(dy —d) to
obtain the result. a

The technique used to prove Corollary 2.1 is the same as for Corollary 1 in [3].

Corollary 2.1. If G has a non-groupie of positive degree, then

Zvewr(g — 9u)(dy — E)
ZvEVJr (dv - E) '

Proof. Lett =3, (dy=d)*/ >, e+ (dy—d). Since 3+ (dy—d) = 3, o\ - (d—d,),

we have _, .
= 2vev+(dy — d_) + 2 vev- (‘@ —d)
Zveer (dv - d) ZvGV* (d - dv)

Applying the Cauchy inequality to the numerators of the right hand side yields

t> ZveVJr(dv B E) + ZUEV* (E - dv)
- [V+] V-

g>1+

which is

Soevtdy o m Yiey-doy Vevrdy  Lier-
t> (EE L )+ (d - = == - = :
SR T R T N V-l

Note that in the last expression the first term is greater than or equal to the least
integer larger than d while the second term is less than or equal to the largest
integer less than d. This implies that ¢ > 1. The result now follows by applying
Theorem 2.1. Ol
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Corollary 2.2. If G has a non-groupie of positive degree, then there exist u,v € G
such that w and v are both adjacent to w for some vertex w in G.

Proof. Suppose that it were not true, i.e. for any v € V, the number of groupies
adjacent to v were less than 2. This would imply that g, < 1 for all v € V. In
particular,

gy <1lforallveV®. (10)

Then by (10) and Corollary 2.1,

Toevs (9= D(d = @)
Zvev+ (dv - d)

which is absurd. O

g>1+4+

=9,

Corollary 2.3. If G has a vertex of degree at least 2, then there exist distinctu,v € G
such that u and v are both adjacent to w for some vertex w in G.

Proof. Since G has a vertex of positive degree, all the groupies must be of positive
degree. Now if all the vertices in G of positive degree are groupies, then we are
finished since the vertex of degree at least 2 is adjacent to two distinct groupies. If
G has a non-groupie of positive degree, Corollary 2.3 follows from Corollary 2.2. [

Corollary 2.4. If |G| = 2, then one of the following cases occurs:

1. GZQKI,'
2. G = KyUmK; where m > 0;

3. dg(u,v) < 2 where G = {u,v}.

Proof. If G contains an isolated vertex, then all the vertices in G are isolated, that
is, G = tK;. Note that the number of groupies in tK; is ¢, which implies that ¢ = 2
since we have assumed |G| = 2. Therefore G = 2K in this case.

Now suppose that G does not contain an isolated vertex. Then all the groupies
must be of positive degree. We consider two cases:

If G does not have a vertex of degree at least 2, then G must be of the form
tKo UmK; where t > 1 and m > 0. Note that the number of groupies in t Ky UmK;
is 2t, which implies that ¢ = 1 since we have assumed that |G| = 2. Therefore,
G = Ky UmK; in this case.

If G has a vertex of degree at least 2, then by Corollary 2.3, G = {u, v}, and u and
v are both adjacent to w for some vertex w in G. This shows that dg(u,v) < 2. O

From Corollary 2.4 we have:
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Corollary 2.5. Suppose G has 3 or more vertices. If there exist u,v € G such that
dg(u,v) > 2, then we have |G| > 3.

Proof. We prove the result by contradiction, by assuming |G| < 3. Since there exist
u,v € G such that dg(u,v) > 2, we have |G| > 2. Hence |G| = 2. We can assume
that G = {u,v}. Then by Corollary 2.4, one of the following cases happens:

1. G =2K;;
2. G = Ky UmK; where m > 0;

3. dg(u,v) < 2 where G = {u,v}.

Note that it is impossible for G to be 2K since we have assumed that G has three
or more vertices. Note also that it is also impossible for cases 2 or 3 to happen, since
in both cases dg(u,v) < 2 for all u,v € G, which contradicts our assumption that
dg(u,v) > 2 for some u,v € G. 0
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