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Abstract

Phelps enumerated all perfect codes of length 15 and of rank 13 and 14,
that can be obtained by the Phelps construction. It is known that all
perfect codes of that length and of rank 13 are Phelps codes. It was an
open problem to determine whether the same is true in the case of rank
14. We give an answer to that problem, as we construct perfect codes of
length 15 and rank 14, that are not equivalent to any Phelps code.

1 Introduction

In this journal, Phelps [9] presented an enumeration of all extended perfect 1-error
correcting binary codes of length 15, here for short perfect codes, that can be obtained
by using the so-called Phelps construction [8]. They all have rank 13 or 14. Perfect
codes of length 15 and of rank 11 are linear and those of rank 12 can easily be shown
to be obtainable by the Vasil’ev construction [13]. It was shown in [1] that all perfect
codes of length n and rank n — log(n + 1) + 2, i.e. if n = 15 then rank 13, can be
obtained by using this construction of Phelps. As there is no remark in [9] whether
or not there are perfect codes of length 15 and rank 14, not obtainable by the Phelps
construction, and since we have not found any notice elsewhere about this fact, we
think it is a good idea to present here such codes. In fact we prove the following
result:

There are perfect codes of length 15 and rank 14 that are not obtainable by the Phelps
construction and that have kernels of dimensions 2,3,4,5 and 6 respectively.

This result is proved below by giving five examples of such perfect codes, one code
in each of these five cases.

Phelps codes are discussed in more detail in Section 2 and our constructions are given
in Sections 3 and 4. We now give some elementary definitions and some necessary
background needed.
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A perfect 1-error correcting binary code of length n is a subset C' of the direct product
Zy = Zy X Zy X ... X Zy, with the property that

any word T of Zy differs in at most one coordinate position from a unique word
of C.

(Certainly, this definition may be extended to the case of e-error correcting perfect
g-ary codes, but here we focus on the binary case, length n = 15 and e = 1.) A
perfect code must have a length equal to n = 2™ — 1 for some integer m, see e.g.
[12]. The problem with the perfect codes is that there seem to be far too many of
them for it to be possible to enumerate and classify them. Krotov [6] proved that
the number of different perfect codes of length n is at least

ntl n—3 n+5
3 ogg(n+1) 1 7 —loga(n+1)
2? 2 :

Thus any enumeration, like the enumeration of Phelps [9], is of great interest.
The concepts rank and kernel will be essential in this note.

The rank of a perfect code is the dimension of the subspace (C) of Z¥, spanned by
the words of the code C. Since any perfect code of length n contains 27~leg(n+1)
words, see e.g. [12], it follows that n — log(n + 1) < rank(C) < n.

A period of a set A is a word p with the property that
p+a€ A for every word a € A.

The set of all periods of a set A is the kernel of A, denoted by ker(A). Trivially the
kernel of any set A is a subspace of the vector space Z7 and further, if the all-zero
word 0 belongs to A, then ker(A) C A.

All possible triples (n,r, k), for which there exists a perfect code of length n, rank r
and with a kernel of dimension &, were determined in a series of papers of which [10]
and [2] perhaps are the two most important. In the case of length 15 and rank 14,
the results in these papers imply that for every integer k in the interval 2 < k < 8§,
there is at least one perfect code of length 15, rank 14 and with a kernel of dimension
k and that no other values of k are possible for a perfect code of this length and
rank.

Some further necessary concepts needed are distance, weight and orthogonality.

The distance between two words ¢ and d is the number of positions in which ¢ and
d differ and the weight of a word ¢ is the number of 1’s in c.

We will say that two words & = (cy, ¢z, ..,¢,) and d = (dy,d, - .., d,) are orthogonal
if
c1dy +cady + ...+ ¢cpd, =0 (mod 2).

A linear code C is a subspace of the vector space Z§ and the dual code Ct of C
consists of all words orthogonal to all words of C.

For other and more details and relations among perfect codes we refer to [12].
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2 Phelps construction

In this section we give Phelps’ construction [8] in the case of length n = 15 and
rank r = 14. For these parameters n and 7, Phelps’ construction coincides with the
construction of Solov’eva [11]. Her construction was also found independently by
Phelps in [7]. So here we will call these codes Phelps-Solov’eva codes.

We need the concept of extended perfect codes. If C is a perfect code of length
n = 2™ — 1, then an extended perfect code D is obtained from C' by setting
D ={(c1,¢2,-. -, cnyc1+ca+...+¢cn) | (c1,c0,...,¢) € C}.

All words of D will have even weight and the minimum distance of D will be four.
Every code D of length n = 2™, with 2"™™ words, all of even weight, and with
minimum distance four will be an extended perfect code.

Let Co, C1,...,C7 be any partition of ZJ into perfect codes and let Dy, Dy, ..., Dy
be any partition of the set of even weight words of Z§ into extended perfect codes.
The union S of the sets

C;x D;={(|d)|c€eC;, de D;} for i=0,1,2,...,7,

will be a perfect code of length 15. To see this we just note that:
(i) The number of words of S will be

|S| =8-|Cy| - |Dy| =23 - 2% - 2% = 211 (1)
which equals the number of words in a perfect code of length 15.
Since
die,¢)>1 for ceC;, el i#j (2)
and o - -
d(d,d)>2 for deD;, d €Dy, i+#j, (3)
we get that

(i) the minimum distance between any two words of S will be at least 3.

By elementary results on perfect codes, see e.g. [12], the properties (i) and (i)
together show that C' is a perfect code.

The advantage with the Phelps-Solov’eva construction is, that we may choose any
partition of ZJ into perfect codes and any partition of the set of even weight words
in Z§ into extended perfect codes.

In our proofs in the following sections, we will use the following property of Phelps-
Solov’eva codes.

Proposition 1. If S is a Phelps-Solov’eva code of length 15 and rank 14, defined as
above, then the only non zero word that is orthogonal to all words of S is the word
(0|1) = 000000011111111.
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Proof. The dual space of S will, if the rank of S equals 14, have dimension 1. All
words of the sets D;, for ¢ = 0,1,2,...,7, have an even weight and thus the word
(0|1) belongs to the dual space of S.

Finally, as will be used in Section 4, we know that any perfect code C' of length 7
containing the all zero word may be constructed by the use of a parity check matrix
H,

C ={¢=(c1,¢q,...,¢7) € Zy | H' =0},

where H is a matrix of size 3 x 7 in which each of the seven possible non zero columns
appears exactly once. This was, in the case of length 7, the first and well known
construction of a perfect l-error correcting binary code, given by Hamming [3]. We
note that the rows of the matrix H span the dual code C* of C.

3 A non Phelps code with (n,r k) = (15,14,6)

In our first example of a non Phelps code of length 15 and of rank 14, we consider a
particular Phelps-Solov’eva code, as in previous section, and cut and paste the two
sets C; x D;, i =0,1.

Let C' denote the linear span
C = span{1110000, 1001100, 1000011}

and let ¢; denote the word 0101010.
We define the code Cy to be the set

Co=CU (e +C).
The set Cy is a perfect code of length 7. Let
e; = 1000000, e, = 0100000, e; = 0010000, ...,er = 0000001.

If we let
Ci:éi—FCg, for i:1,2,...,7,

then the sets C;, i = 0,1,2,...,7, constitute a partition of ZJ into perfect codes.

Similarly, for extended perfect codes, we use the code
D = span{01110001, 01001101, 11000011}

and let d; denote the word 00101011. The extended perfect code Dy is defined to be
the union of the sets D and d; + D. We let

€; = 10000001, e5; =01000001, ..., e = 00000011.
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We denote the translates of the perfect code Dy by
Di=¢e +Dy, i=12,...,7.

As above, these codes D;, i = 0,1,2,...,7, constitute a partition of the set of even
weight words of Z3.

By using the words ¢, = 0101001 and dy = 10101001 we now cut the sets Co x Dg
and Cy x Dj into pieces and paste them together into four disjoint subsets. Observe
that one may easily check that

C() +C = Cl and Dg + &2 = -DZ- (4)

The four subsets will be

C x (DU(D+dy))
(C+a) x (DUD+ds)
(C+c) x (D4+d)U(D+d+dy))
(CH+e+6) x (D+d)U(D+di+dy))

We will consider the code W that consists of the words in the union A of the four
sets above and the words in the union B of the following six sets:

OZXD17 C’3)<D37 C4XD4, C5XD5, C6XD6, O7XD7.

Theorem 1. The code W is a perfect code of length 15 and rank 14, which cannot
be obtained by the Phelps-Solov’eva construction.

Proof. The number of words of W will trivially be 2!!. To prove that W is perfect,
it is thus sufficient to prove that the minimum distance of W equals 3.

As the the words in the set B together with the words in the sets Co X Dy and C X Dy
constitute a Phelps-Solov’eva code S we get that the minimum distance in the set B
is at least 3. It follows from equation (4) that

A g (Oo @] Ol) X (DO UDQ)

Again, we consider the Phelps-Solov’eva code S and conclude from the above equa-
tion that the distance between any word of A and any word of B is at least 3.

Similar arguments also show that the minimum distance of A equals 3. We have now
proved that the minimum distance of W equals 3. The code W is thus perfect.

We now prove that the rank of W will be 14. We first note that
C() X {0} Q w and {O} X -DO g W. (5)
It is a trivial exercise to prove that the following six words, all contained in W,

(@ler), (eslez), (ealer), (esles), (eles), (erler),
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together with the following eight words of W

(1110000[0),  (1001100(0), ~ (1000011|0), (0101010]0)
(0/01110001), (0]01001101), (0]11000011), (0]00101011)

constitute a set L of 14 linearly independent words of Z3°. Thus the rank of W is at
least 14. As the word (0000000|11111111) is orthogonal to all words of W, the rank
of W cannot be 15. We have now proved that the rank of W equals 14.

It remains to prove that W cannot be obtained by the Phelps-Solov’eva construction.
Assume that W is a Phelps-Solov’eva code. The dual code of W just consists of the
all zero word and the word 000000011111111. Assume that W would be obtainable
by the Phelps-Solov’eva construction. This will imply that W would be the union of
the sets

W = ULy(C] x D)) (6)

where the sets C} and D}, for i = 0,1,2,...,7, are perfect codes respectively extended
perfect codes, such that

CinCi=0 and D;ND;=0 if i#j.

Now assume, that the perfect code W, that we have constructed above, is a Phelps-
Solov’eva code and thus can be described as in equation (6). We note that the all
zero word 0 belongs to W. Without any loss of any generality we may assume that
0 belongs to the set Cfy x Dj. This implies that 0 € C§ and 0 € D} and that

Ch={c|(c0) e W} and D, ={d|(0ld) e W}.

As (¢,10) € W and (0|d,) € W we get that ¢, € C}) and that d; € Dj, still under the
assumption that W is obtainable by the Phelps-Solov’eva construction. However, as
easily checked, (¢;|d;) ¢ W, and consequently

Cox Dy g W. (7)
Hence W cannot be obtained by the Phelps-Solov’eva construction.
The theorem is now proved.

We now calculate the dimension of the kernel of W.

Lemma 1. The kernel of W is a subset of A.

Proof. As the all zero word belongs to W, we know that the kernel of W is a subset
of W. Assume that

(cld) € ker(W) \ A.
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Then (¢|d) € C; x D; for some couple (3,7) € {(2,1),(3,3),...,(7,7)}. The codes
C; and Dj are both translates of the linear codes Cy respectively Dy, which both

contain the all zero word. Hence, (¢|d) € ker(W) implies that

OoXDoZ(E|d)+01XD]gW

This contradicts what we found in the proof of Theorem 1, compare equation (7).
The lemma is proved.

Lemma 2. The set C x D belongs to the kernel of W .

Proof. All ten direct product of sets, that we used in the definition of W, are unions
of translates of the set C' x D. As both C' and D are linear spaces we immediately
get that for any translate @ + C' x D of C' x D, where @ € Z,°,

(Gd)eCxD = (fd)+(@+CxD)=a+CxD.

Lemma 3. For any period p of W, and any direct product of the sets C; x Dj,
(1,5) € R={(2,1),(3,3),(4,4),(5,5),(6,6),(7,7)},

P+ Cz X Dj = Cil X .Djl where (i’,j’) € R.
Further p+ A = A.
Proof. Assume that p = (§|p") is a period of W. As any translate of a perfect code
is a perfect code we know that

(i,j)ER = p+C;xD;=C"xD CW, (8)

for some perfect code ¢’ = §' + C; and some extended perfect code D' = " + D;. If
€, € C', where x = 2,3,...,7, then we get that

{(@ld)|deD }CwW (9)
From the definition of W, we know that
(6,|d")eW <« d"e€D, where (z,y)€ R. (10)

From equation (9) and (10), we thus get that D' = D,. Similarly we can prove that
C'=C,.

Ife, =0 or &, = &, then from (8) follows, as above, that either Cy x Dy or Cy x D,
are subsets of W. As in the proof of Theorem 1, compare equation (7), we get that
this is impossible. The lemma is proved.

Proposition 2. The kernel of W will have dimension 6 and will be equal to C X D.
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Proof. By Lemma 1, the kernel of W is a subset of A and by Lemma 2, C x D,
which is a subset of A, belongs to the kernel of W. As

AC{e=0,61,0,8 =0+ &} x {do = 0,dy,dy,d3 = dy + dp} + C x D
it is sufficient to check which of the words (&]d;),
Of these 16 words, it is only the word p = (¢
p+ A = A. However, as easily checked

(51 +62|J1 +Li2) + 02 X .D1 = Cg X .D7.

This shows by Lemma 3, that (¢, + G.|d, + da) & ker(W). The proposition is now
proved.

i,j € {0,1,2,3}, that are periods.
3|ds), that has the property that

4 Non Phelps codes with (n,r k) = (15,14,k) for k = 2,3,4
and 5

To produce perfect codes of length 15, rank 14 and with kernels of the dimensions 2,
3, 4 and 5 we will use other partitions of ZJ into perfect codes, than the partitions
given by translates of the code Cp, as in the previous section.

Let C be defined as in the preceding section. It will suite our purposes to find perfect
codes C respectively C/', for i = 2,3,...,7, and of length 7, all containing the all
zero word and satisfying

ZIN(CoU (&4 Co)) = (B +C)U...U (& +C%) = (B2 +CY)U...U (&, +CF) (11)

and such that
[CnCynCyn...NCL =4 (12)

respectively
[ICnCynCyn...nCY| =2. (13)

To find these partitions we made use of the following lemma, proved by West-
erbéack [14].

Let ¢;, for i = 1,2,...,7, be defined as in the preceding section.
Lemma 4. Let C' and C" be any two Hamming codes of length n. Then
(e +C)NE+C") =0
if and only if there is a word ¢ such that
¢=(c1,¢9,...,0y) ECTNC"™ with ¢ # ¢;.

Further
C'ng+C") =10
if and only if there is a word ¢

¢=(c1,¢0,..,0y) €ECHNC"™ with ¢ #0.
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For any Hamming code K of length n, the corresponding dual code K+ consists of
all words in K of weight (n + 1)/2 and the zero word. We also know that the zero
word and the all one word 111...11 belongs to K. This implies, by the fact that C' is
generated by the words 0001111, 0110011, 1111111, that

|C'N K| =2| <0001111,0110011 > NK*|.

Hence, by Lemma 4 and the fact above, we get the necessary Hamming codes Cj,
Cy, ..., Chand CY, CY, ..., CY.

Let C' be the Hamming code with the parity check matrix

000
H=]011
110

—_

111
010
100

Then, with C} = C§ = Cp and C] = C' for i =4,5,6,7, it is easily checked, that the
equations (11) and (12) will be satisfied.

To get equation (13) satisfied, we have to use three distinct Hamming codes. The
codes CY and Cf equals and are Hamming codes with the parity check matrix

" __
Hy =

o = O

110011
010101
011110
Also the perfect codes Cy and C7 are equal and have the parity check matrix

" __
Hy =

O = O

001111
010101
111001
The perfect codes C} and C} will both have the parity check matrix

" __
H) =

=)

111100
100110
010101

Again, as the rows of the matrices above span the dual codes of the perfect codes
involved, we may get that the conditions (11) and (13) will be satisfied.

The extended perfect codes, needed in the Phelps-Solov’eva construction, are defined
like in Section 3. More precisely, let 7 denote the cyclic shift of a word:

7'['((1317Ig,x37$47$5,x67$7)) - (a:7,x1,a:2,x3,x4,$5,x6).
The extended perfect codes D}, i = 2,3,...,7 are defined by

Di={(ci,ca,.. . crcitcat .o ter) | 77 (ery oo h00) €CLY i=2,3,...,7,
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and similarly for the extended perfect codes D, i=2,3,...,7.

We now are able to define non Phelps-Solov’eva codes with the desired dimensions
of their kernels. Let A, Dy, D, ..., D; be defined as in the preceding section. We
remind that the codes Dy, D,, ..., D; are translates of the extended perfect code
Dy.

We define Wy to be the union of the set A with the sets (e, +C%) x Dy, (e3+C%) x D3,
(é4 + Cfl) X D4, (é5 + Cé) X .D57 (ée + Cé) X De and (é7 + 0!7) X D7.

Similarly W, will be the union of the set A with the sets (é3+C%) x Dy, (e3+C%) % D3,
(é4 + Célll) X D4, (é5 + Cg) X .D57 (ée + Cg) X .D6 and (é'{ + C"TI) X D7.
The code W3 will be the union of the set A with the sets (& + CY) X (
(€s+C3) x (€34 D3), (ea+CY) x (e5+ Dy), (€54 C5) x (€5 + D)), (e6+Cg) x (e5+ Ds)
and (e7 + C7) x (&% + Dy).

Finally, the code W, will be the union of the set A with the sets (e, +C%) x (& + D7),
(6s+C3) x (&5+ DY), (e4+C4) x (€3+ DY), (e5+C2) x (€5 + DY), (es+C4) x (¢ + D)
and (é; + CY) x (&5 + Dy).

Theorem 2. The codes Wy, W3, Wy and Wy are perfect codes of length 15 and rank
14. They are not obtainable by the Phelps-Solov’eva construction, and further

dim(ker(W;)) =i for i=2,3,4 and 5.

Proof. As in the proof of Theorem 1, the number of words in each of the four codes
Wy, W, Wy and Wy equals 2'! and the minimum distance will be equal to 3. Hence
these four codes are perfect.

As the set A is contained in the codes Wy, W3, W, and Wi, these codes cannot be
obtainable by the Phelps-Solov’eva construction, compare the proof of Theorem 1.

The word 000000011111111 is orthogonal to all words of the codes Wy, W3, W, and
Ws. Thus the rank of each of these codes is less then 15. The codes W3, Wy and W5
contain the same set L of 14 words, which were proved to be linearly independent in
the proof of Theorem 1. Hence the rank of each of these three codes will be 14.

We will below show how one can prove that the kernel of the code W; has dimension
2. As no perfect code of dimension 2 and length 15 can have a rank less then 14, see
e.g. [10] or [2], it will then follow that also the code W, will have rank 14.

It remains to consider the kernels. We will here only prove that dim(ker(W3)) = 3.
The same methods apply for the codes Ws, Wy and Wi.

Now let
F = {0000000, 1111111} and G = {000000007 11111111, 10001110,01110001}.

The set F is a subspace of each of the codes CY, for i = 2,3,...,7 and the set G
is a subspace of each of the codes D}, for ¢ = 2,3,...,7. As these codes are linear
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codes, they will all be unions of translates of F' respectively G. Further as F' also is
a subspace of C' and G also is a subspace of D we immediately get that A is a union
of translates of F' x G. We may thus conclude that

F x G C ker(Ws). (14)
Let &, &, d; and dy be as in Section 3. Let
fi = 1110000, f, = 1001100, and g = 01001101.

These words span the set of coset representatives of F' and G in respectively C' and
D. Thus

A g Span{.flaf?vt_:lvaZ} X Span{glaglvg2} +FxG.

As in the proof of Lemma 1, we may conclude that the kernel of W3 must be a subset
of the set A. From equation (14) it thus follows that it is enough to prove which of
the 128 words in span{fi, f2,c1,C2} X span{gi, dy,d»} that are periods.

We note that f;, i = 1,2 and g; belongs to C respectively D. As in the proof of
Lemma 3, for a period p of W3, we get that p + A = A. Using these facts we get,
compare the proof of Proposition 2, that

p € ker(W3) = p€{0,(¢ +&ld, +dy)} + span{ fi, fo} x span{g }.

It thus remains to consider the above 16 words.

In order to make the notation short, we now let
AZXBiz(é1+OZH)X(é:+D;71) for i:3747...77

and
Ay x By = (ex + CY) x (e] + Dr).

By Lemma 3, for each i = 2,3,4,5,6,7,
pE ker(Wg) = p+AXB;= Aj X Bj, (15)

for some element j € j2, 3,4,5,6, 7}. Hence the set of words in the sets span{fl, fo,
¢+ ¢} and span{gi, d; +d.}, that can contribute to be candidates for periods of Wi,

give rise to sets of permutations G and H on the sets {A,, A3, ..., A7} respectively
{B,, B, ..., Bz}.

It is easy to see, e.g. by using the defining parity check matrix of A,, that
51+62+A2 g{AZ,Ag,...,A'y}. (16)
For the word f; we get that

fi+As=A; and fi+A;=A; for i=3,4,67.
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Similar calculations for the word f, will then give
g = {Ld7 (A5 A7)7 (A2 A6)7 (A5 A7)(A2 AG)}

Since the word d; 4+ d, can only be combined with the word & + &, we get, frgm
equation (16), that the only candidates for periods from the set span{g,d; + da}
will be the words 0 and g;. They give rise to the group

# = {id.,(B, Bs)(Bs Br)}.

As the groups G and H only have the identity in common, we get from (15), that
just the trivial coset (0]0) + F x G will constitute the set of periods of Ws.

We have now proved that the kernel of W3 equals F x G and consequently
dim(ker(W3)) = 3. As mentioned above, similar methods can be used to prove that
dim(ker(W;)) = i, for i = 2,4,5. This will prove the theorem.

5 Some remarks and conclusions

It can be proved that, every perfect code of length n = 15, rank r = 14 and with
a kernel of dimension & = 8 is equivalent to a perfect code obtainable with the
Phelps construction. This can be seen e.g. by considering the classification of all
such perfect codes given in [4].

At present time we have no idea whether or not there exists any perfect code of
length 15, rank 14 and with a kernel of dimension 7 that is not equivalent to some
perfect code obtainable by the Phelps construction.

It was proved in [10] and [2], that for every integer % in the interval
og(n+1)=3 < | <y —log(n+1) — 3

there is at least one perfect code of length n = 2™ — 1, where m > 4, rank r =
n —log(n + 1) + 3 and with a kernel of dimension k and that no other values of
k are possible for a perfect code of that length and rank. As already mentioned,
every perfect code of length n and rank r = n — log(n + 1) + 2 is equivalent with a
Phelps code, see [1]. Further all perfect codes of length n and rank n —log(n+1)+1
can easily be shown to be Vasil’ev codes. The next step would be to say something
general about perfect codes of length n and rank n — log(n + 1) + 3.

We are quite convinced that it is possible to generalize our construction to any length
n = 2™ —1 greater than 15 in order to get non Phelps codes of rank n—log(n+1)+3.
However, we must mention that every perfect code of length n = 15 and with a kernel
of dimension k = n —log(n + 1) — 3 is equivalent to a perfect code obtainable with
the Phelps construction [5].
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