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Abstract

A graph is called supermagic if it admits a labeling of the edges by pair-
wise different consecutive integers such that the sum of the labels of the
edges incident with a vertex is independent of the particular vertex.

In this paper we deal with non-regular supermagic graphs. We in-
troduce some constructions of supermagic non-regular graphs using su-
permagic labeling of some regular graphs and (a, 1)-antimagic labeling of
some graphs.

1 Introduction

We consider finite undirected graphs without loops, multiple edges and isolated ver-
tices. If G is a graph, then V(G) and E(G) stand for the vertex set and edge set of
G, respectively.

Let a graph G and a mapping f from E(G) into positive integers be given. The
index-mapping of f is the mapping f* from V(G) into positive integers defined by

frv)= Z n(v,e)f(e) for every v € V(G),

e€E(G)

where 7(v, €) is equal to 1 when e is an edge incident with a vertex v, and 0 otherwise.
An injective mapping f from E(G) to positive integers is called a magic labeling of
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G for an index X if its index-mapping f* satisfies
vy =X forall v e V(G).

A magic labeling f of G is called a supermagic labeling of G if the set {f(e) : e €
E(G)} consists of consecutive positive integers. We say that a graph G is supermagic
(mmagic) if and only if there exists a supermagic (magic) labeling of G.

In [8] it is proved that if G is an 7-regular supermagic graph of order n, then there
exists a supermagic labeling f : E(G) — {1,2,...,%5} of G. The corresponding
index is A = £(1+ ). In this paper we will consider only such supermagic labelings
of regular graphs.

The concept of magic graphs was introduced by Sedlécek [15]. The regular magic
graphs are characterized in [4]. Two different characterizations of all magic graphs
are given in [13] and [12]. Supermagic graphs were introduced by Stewart [16]. In [1],
[6], [8], [10], [14] and [17] some classes of regular supermagic graphs are described.
Hartsfield and Ringel [7] presented a simple construction of non-regular supermagic

graphs. They proved

Proposition 1. [7] Let G be a regular supermagic graph. Then there exists an edge
e € E(G) such that G — e is a supermagic graph.

In [5] some constructions of some infinite classes of non-regular supermagic graphs
are given. These classes, besides some isolated examples presented in [6] and [16], are
the only known classes of infinite non-regular supermagic graphs. Thus we paid our
attention to the study of non-regular supermagic graphs. In this paper we present
some constructions of such graphs.

2 Supermagic regular graphs

In this section we deal with supermagic graphs obtained from a regular graph by
contraction of an edge. We prove

Theorem 1. Let G be a 3-regular triangle-free supermagic graph. Then there exists
an edge e € E(G) such that the graph obtained from G by contraction of the edge e
15 supermagic.

Proof. Let G be a 3-regular supermagic graph of order n. In [§] it is proved that

n =2 (mod 4) and there exists a supermagic labeling f : B(G) — {1,2,...,%} of

G for an index 2 (1 + 3") Let ujus € E(G) be the edge of G such that f(ujus) = 32"
By H we denote the graph obtained from G by the contraction of the edge ujuy. Let
w denote the vertex in V(H) which arose by identification of w; and wuy. Consider

the bijection g : E(H) — {1+ 22 94 302 1 130 4 32} given by

gle) = fle) + 3(”4—_2) for every e € E(H).
For its index-mapping we get
g (w) = f*(ur) + f*(uz) — 2f (uru)

=2 (L4 %) - 2%+ 3 —2) = L
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and

g*(v) — f*(U) +33(n4—2) — % (1 + STTL) + 9(n4—2) — 3(37;—2)7

for every vertex v € E(H) — w.
Thus g is a supermagic labeling of H. O

Let f be a supermagic labeling of an r-regular graph G of order n. The dual
labeling g of f is defined by

gle) =145t — f(e) for every e € E(G).

For every v € V(G) we have
g =r(1+3)-f)=r0+3)-5;0+3)=501+%).

Thus g is also a supermagic labeling of graph G.

So if G is a 3-regular supermagic triangle-free graph, then there exist at least two
edges e, es such that by the contraction of the edge e;, 1 = 1,2, a supermagic graph
is obtained.

Recall that the Mobius ladder M, where 6 < n = 0 (mod 2), is a 3-regular
graph consisting of a cycle C,, of length n, in which all pairs of opposite vertices are
connected by an edge (chord). Sedldcek proved, see [14], that M, is supermagic if
and only if 6 <n =2 (mod 4).

In Figure 1 the supermagic labeling of the Mobius ladder A, and the correspond-
ing dual supermagic labeling of Mg are illustrated. The edges with the maximal
labels are depicted with thick lines.

Figure 2 illustrates the supermagic labelings of the graphs obtained from the
graphs in Figure 1 by contraction of the edge with the maximal value.

FIGURE 1.
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FIGURE 2.

It is easy to see that the first graph in Figure 2 can also arise from the cartesian
product C,, x K, of the cycle C}, and the complete graph K, by the contraction of
an edge joining two edge-disjoint cycles of length n. In [8] it is proved that there
does not exist a 3-regular supermagic graph of order n = 0 (mod 4). Thus it is not
possible to use Theorem 1 in this case. Despite this fact we found a supermagic
labeling of such a graph. First we introduce the following notation. Let A, be a
graph isomorphic to the cartesian product of C), and K, in which one edge joining
two edge-disjoint cycles of length n is contracted. So the graph A, has the vertex
set

V(A,) = {u,vy,...,v5,05,...,0v2},

» Yno

(for the sake of clarity let u = v} = v?), and the edge set
n n
E(A,) = U{vz'lvz'l+17 Uz‘zvz‘zﬂ} U U{Uzlvzz )
i=1 i=2

where subscripts are taken modulo n.
Now we are able to prove

Theorem 2. The graph A, is supermagic for every positive integer n, n > 3.

Proof. If n > 3 is an odd positive integer, then A, is isomorphic to a graph which we
obtain from the M&bius ladder M,, with one contracted chord. In [14] is constructed
a supermagic labeling of My,, 3 < n =1 (mod 2), with the minimal value on the
chord. Then we consider the dual labeling to this supermagic labeling and according
to Theorem 1, we get that A, is a supermagic graph.

If n > 4 is an even positive integer, we consider a mapping f : E(4,) —
{2,..., 2t — 2} defined by

Foll ) = 2n+_i;71 %fzizl (mod 2),
+5% if i=0 (mod 2),

37"-1-‘24*71 if i=1 (mod 2),
n+%5% if i=0 (mod 2),
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f(viv}) = 77" —q if ¢>2.
It is easy to check that f is a bijection and
f*(v) =6n—2 forevery v € V(A4,).
Thus f is a supermagic labeling of A,,. |

Another construction of supermagic non-regular graphs provides the following
theorem.

Theorem 3. Let f be a supermagic labeling of a 4-reqular graph G such that there
exists a vertex v € V(G) with

flour) + fvug) = f(vuz) + f(vu),

where u;, 1 = 1,...,4, are the vertices adjacent tov. Let H be a graph with the vertex
set V(H) = (V(G) — v) U {v',v*} and the edge set E(H) = (E(G) — Ui, {vw;}) U
{vluy, viuy, viuz, viug, v*v?}. Then H is a supermagic graph.

Proof. Let f be a supermagic labeling of 4-regular graph G such that for the vertex
v e V(G),
flour) + f(vuz) = flvus) + fvua).
This expression is equal to 2 5, where X is the index of f.
Consider a bijection g : E(H) — {1,2,...,|E(G)|,|E(G)| + 1} defined by

fle) it e€ E(G),
gle) = f(uiv) if e=un, (1,7) € {(1,1),(2,1),(3,2), (4,2)},
|[E(G)] +1 if e=nvl?

For the index-mapping of g we have

g'(v') = g(v'w) + g(v'uz) + g(v'v?) = flvw) + fvuz) + 1+ |E(G)|
=1+ |E(G)| +1+|E(G)| =2(1+ |E(G)]),

g"(v*) = g(v’uz) + g(v’us) + g(v'0%) = f(vuz) + fvus) + 1 +|E(G)|
=1+ E(G)| +1+|E(G)|=2(1+ |E(G)),

g (u) = f*(u) =2(1+ |B(G)|) for every u € V(H) — {v*,v*}.

Thus g is a supermagic labeling of H. a

It is obvious that the graph G in Theorem 3 arises from H by the contraction of
the edge v'v?

In [9] it is proved that if G is a 4-regular bipartite graph decomposable into two
Hamilton cycles then for every vertex v € V(G) there exists a supermagic labeling
f of G such that

fler) + flez) = fles) + f(ea),
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where the edges e;, ¢ = 1,...,4, are adjacent to v. Thus if GG is a 4-regular bipartite
graph decomposable into two Hamilton cycles then the graph obtained from G by
splitting of an arbitrary vertex and adding a new edge is supermagic. In Figure 3 is
illustrated a supermagic labeling of a bipartite graph decomposable into two Hamil-
ton cycles and the supermagic labeling of the corresponding graph obtained from the
original by splitting a vertex and adding an edge. In the original graph the vertex
which is split and in the corresponding graph the added edge are marked.

FIGURE 3.

In the next part of this paper we will deal with the disjoint union of two regular
graphs. We are able to prove

Theorem 4. For i = 1,2 let G; be an ri-regular supermagic graph of order n;. If
ry > 1y and
nz’f‘% — nlr% + 27‘11‘2711 1
4(1‘1 — T2) 2
18 a non-negative integer, then the disjoint union of the graphs Gy and Gs is a
supermagic graph.

Proof. As GGy is an r-regular supermagic graph, there exists a supermagic labeling
fi : E(G1) — {1,...,%%} of G, for an index \; = % (1+ %) Analogously,

there exists a supermagic labeling f, : E(Gy) — {1,..., 2} of G, for an index
Mo = 12 (1 + w)
N 22 s

Ifp= %ﬁgm — 1 is a non-negative integer then we consider a bijection

g:E(G1UGy) — {1+p,... nudnm 4 ) defined by
oe) = file) +p for e € E(Gy),
fale) + 2 +p for e € E(G,).

For its index-mapping we get

g*(v) _ Al +rp if ve V(Gl),
AZ +T2(T12nl +p) if ve V(Gg)
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So g*(v) = rira(ring + rang)/4(r1 — re) for every vertex v € V(G U Gy). Thus g is
a supermagic labeling of G; U G,. O

Figure 4 depicts a supermagic labeling of K33 U K44 obtained by using the con-
struction described in Theorem 4.

46 49

FIGURE 4.

3 (a,l)-antimagic graphs

Let G be a graph. A bijective mapping f from E(G) into the set of integers
{1,2,...,|E(G)|} is called an antimagic labeling of G if the index-mapping f* is
injective, i.e., if it satisfies

[ (v) # f*(u) for every u,v € V(G), u # v.

The concept of an antimagic labeling was introduced by Hartsfield and Ringel
[6]. Bodendiek and Walther [2] introduced the special case of antimagic graphs.
For positive integers a, d, a graph G is said to be (a,d)-antimagic if it admits an
antimagic labeling f such that

{Fv):veV(G)}={a,a+d,...,a+ (]V(G)| —1)d}.

EGI(EG)|+1 V(G)| - 1)d
Obviously, a = |E( )||§|/(é)|)| + )—(| ( )2| ) in this case. Since a is an integer,
for an arbitrary r-regular (a,1)-antimagic graph of order n: if =0 (mod 2), then
n=1 (mod 2) and if r =1 (mod 2), then n =0 (mod 4).
In this part we will describe two constructions of non-regular supermagic graphs
using (a,1)-antimagic graphs.

Theorem 5. Let G1,Gy,G3 be 2-regular (a,1)-antimagic graphs each of order n.
Then there exists a supermagic graph G, which is decomposable into two edge-disjoint
spanning subgraphs Fy and Fy, where Fy is isomorphic to the disjoint union of
G1,G, Gy (i.e., F1 =2 G1 UGy UG3) and the subgraph Fy is isomorphic to n copies
of a path on 3 vertices (i.e., Fy = nP;).
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Proof. Since G, G, G5 are 2-regular (a,1)-antimagic graphs of the same order n, it
follows that n =1 (mod 2). Moreover, for ¢ = 1,2, 3 there exists an (a, 1)-antimagic
labeling f; : E(G;) — {1,2,...,n} of G;, such that its index-mapping f; satisfies

{ff(v) v e V(Gy)} = {3,255, 3]
We denote the vertices of graph Gy, i = 1,2,3, by vi,v}..., v in such a way that

1
f{‘(v}):n;— +i for i=1,...,n,

n—1 . . n+1
f*(v2)— T+2Z for Z—l,...,T,
2\V;) = ; .
2@—"T+1 for z:"T“’,...,n,
wr 3y Jn+1 for i:l,...,"TH,
) =1 . 43
7 for ’L:T,...,n.

Evidently the following holds:

fiw) < fivy) <0 < filva),
F (1) < f3(vags) < f5(03) < f5(Viss) <o < fi(vap),

Fi(hes) < filvhas) < - < F000) < F0]) < (e <o+ < fi(vhan).

Let G be a graph obtained from the disjoint union of G1, G2, G3 with added edges
viv?, vZvd, i =1,...,n. Now we consider a mapping g : E(G) — 7"2—+1, 7"2—+3, cee
17"2 } defined by

file) + B2=L for e € E(Gy),
fale) + 2L for e € E(Gs),
) fale) + =L for e € E(Gs),
9() = 9"2—“—1' for e=viv? i=1,...,n,
6n+1—1 for e=vfv} i=1,..., 2,
\Tn+1—1i for e =02} 1= .. n

It is easy to check that g is a bijection and for its index-mapping we get
g (v}) = f(vh) + 2222 + g(v}v?) = B 4+ 150 — 1+ 22— = 20n

for every i =1,...,n.
Analogously for j = 2,3 and every i = 1,...,n we have

g*(v]) = 20n.

Thus g is a supermagic labeling of G. O
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Let n > 3 be an odd positive integer. Let H, be a graph with the vertex set

V(HTL):{/U%7"'7,U71L7,U%7""/UTL7 1r > TL}

and the edge set

E(Hy) = U{UzUHl’ Uy Uzyz;lv UiV, v}, Vi),
i=1
where subscripts are taken modulo 7.

It is easy to see that H, is decomposable into two edge-disjoint spanning sub-
graphs Fy and Fy, where F} is isomorphic to three copies of the odd cycle C,, (i.e.,
F) 2 3C,) and the spanning subgraph F5 is isomorphic to n copies of the path on
3 vertices (i.e., F» = nP;). It is known, see [3], that there exists an (a, 1)-antimagic
labeling of the odd cycle Cp, = v1vs ... vy such that f*(v;) = 2 4ifori=1,...,n.
According to the proof of the previous theorem we get

Corollary 1. For every odd positive integer n > 3 the graph H, is supermagic.

Figure 5 depicts a supermagic labeling of Hj.

30
7\ ~
21 29
36
24
25
23 31 37
26
27& 33
20 V 28
39 35

FIGURE 5.

In [11] the following is proved:

Proposition 2. Let k, n and m be positive integers. For odd k each of the following
graphs is (a,1)-antimagic:

(i) kC, if 3<n=1 (mod 2),
(ii) k(C3UC,) if 6<n=
(iii) K(CLUC,) if 5<n=
(iv) K(CsUC,) if 4<n=
(

(v) E(Cr,UCy) if 6<m=0 (mod?2),n=1 (mod?2),n>%+2.
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Combining Theorem 5 and Proposition 2 we can find many other supermagic
non-regular graphs. In Figure 6 is depicted a supermagic labeling of one such graph.
Before we present another construction of supermagic graphs using (a,1)-anti-
magic graphs, we remind the reader that if G and H are regular (a,1)-antimagic
graphs of the same order, then the degrees of the graphs must have the same parity.

52

54 ’
YA/l A
‘Iil ‘/65

62
51

ja
50 v 60\ y e
58 ¥

FIGURE 6.

Theorem 6. Let k be a positive integer. Let Gy (Gs) be an r-regular ((r + 2k)-
regular) (a, 1)-antimagic graph of order n. Suppose that

nr?  nk+1 nr(r+2) nk+1

=~ T T 2

s a non-negative integer. Then there exists a supermagic graph G, which is decom-
posable into two edge-disjoint spanning subgraphs Fy and Fy, where Fy is tsomorphic
to the disjoint union of Gy and G (i.e., Fi = G U Gy) and the subgraph F is
isomorphic to n copies of Ky (i.e., Fy = nk).

Proof. Since G; is an r-regular (a;,1)-antimagic graph of order n, there exists an
(a1, 1)-antimagic labeling f, : E(G1) — {1,2,..., 5} of G1, such that for its index-
mapping f; we have

{fi(v):veV(Gy)} ={a, a1 +1,...,a1 +n — 1}.
Clearly a; = (nr? + 2r — 2n + 2)/4 in this case.

Analogously there exists an (aq, 1)-antimagic labeling fo : E(Gy) — {1,2,...,

@} of G,. For its index-mapping we have

{ff(v):veV(G)}={az,as+1,...,a0+n— 1},

where ay = (n(r + 2k)? + 2(r + 2k) — 2n + 2) /4.
We denote the vertices of Gy, i = 1,2, by vi,v}..., v} in such a way that

fivh)y=a;—1+i for i=1,...,n,
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ffw)=ay—1+i for i=1,...,n.
Let G be a graph obtained from the disjoint union of G; and G5 with added edges
Wii=1,...,n
If pp = % - "k;l is a non-negative integer, then we consider a bijection g; :
E(G)— {1+4+p1,...,n(r+k+1)+p} defined by

fl(e)"'w‘*'pl for e € E(Gy),
g1(e) = 4 fole) + for e € E(G,),
nir+k+1)+1—i+p for e=vi? i=1,...,n

[

For its index-mapping we get

* * n(r+2k
g1 (vi) = fi(}) + ("2 4 1) + g(v}0})
=ay—1+i+r(" S L p)pnfr+k+ )+ 1—itp
_ n(3ri+4r+2) kn(r+1) nr2(r+1)
= 4 =t >
and
G2 = Fh) 0+ 2+ g(ofe?)
=a—1+i+(+2k)p+n(r+k+1)+1—i+p
n(3r24+4r+2) kn(r+1) nr2(r+1)
4 R i HT?
fort=1,...,n.
Thus ¢, is a supermagic labeling of G.
If po = % — % is a non-negative integer, then we consider a bijection

g2 E(G) — {1+pa,...,n(r + k+ 1) + py} defined by

file) + HTHHZ) +p2 for e € E(Gy),
ga(e) = ¢ fale) + pa for e € E(Gg)7

”(T+2_k+2 +1—i+py for e=ovl? i=1,...,n.

Rl

For its index-mapping we get

n(3r? + 6r + 2) n En(r+1) . nr(r+1)(r +2)

g3 (v) = 1 5 1k for v € V(G).

So g, is a supermagic labeling of G in this case. O
For r even and k = 1 in the previous theorem we immediately obtain:

Corollary 2. Let Gy be a 2r-regular (a, 1)-antimagic graph of order n and let Gy be
a 2(r + 1)-regular (a,1)-antimagic graph of order n. Then there exists a supermagic
graph G which is decomposable into two edge-disjoint spanning subgraphs Fy and F;,
where Fy is isomorphic to the disjoint union of Gy and Go (i.e., F1 = G1 U Gs) and
the subgraph Fy is isomorphic to n copies of Ky (i.e., Fy £ nKs).
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Proof. Since the graphs G; and G, are (a,1)-antimagic graphs of even degree, then

n =1 (mod2). Thus py = MZE _ mll _ 52 _ L s 5 pogsitive integer and
according to Theorem 6, there exists a desired supermagic graph G. |

The construction described in Theorem 6 is illustrated in Figure 7.

FIGURE 7.
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