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Abstract

For a simple graph G let Ng[u] denote the closed-neighborhood of vertex
u € V(G). Then G is closed-neighborhood anti-Sperner (CNAS) if for
every u there is a v € V(G)\{u} with Ng[u] C N¢[v]; and a graph H
is closed-neighborhood distinct (CND) if every closed-neighborhood is
distinct, i.e., if Ny[u] # Ny[v] when u # v, for all v and v € V(H).

In this paper we are mainly concerned with proving some simple prop-
erties of CNAS graphs, and constructing CNAS graphs. We construct a
family of connected CNAS graphs with n vertices for each fixed n > 2.
We classify all connected CNAS graphs with < 6 vertices using these
families, and find the smallest connected CNAS graph that lies outside
these families. We indicate how some CNAS graphs can be constructed
from a related type of graph, called a NAS graph. Finally, we present
an algorithm to construct all CNAS graphs on a fixed number of vertices
from labelled CND graphs on fewer vertices.

1 Closed-Neighborhood anti-Sperner Graphs

Let F = {Ny, Ny, ...} be a family of sets. Then F is Sperner if no member of F is a
subset of another member; and F is anti-Sperner if every member of F is a subset
of another member.

Let G be a simple graph with a finite number of vertices. For each u € V(G) let
Nglu] denote the closed-neighborhood of u, i.e., vertex u together with the set of
vertices to which u is adjacent.
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Let F(G) = {Nglu]|u € V(G)} be the family of closed-neighborhoods of G. Then
if F(G) is anti-Sperner we say that G is a closed-neighborhood anti-Sperner (CNAS)
graph, i.e., for every u € V(G) there is a v? € V(G)\{u} with Ngl[u] C Ng[u?].
Vertex u? is a closed-parent of vertex u; so a CNAS graph is a graph in which every
vertex has a closed-parent. We note that v and u? are adjacent.

A graph H is closed-neighborhood distinct (CND) if every closed-neighborhood is
distinct, i.e., if Ny[u] # Ny[v] when u # v, for all v and v € V(H).

If we replace the word ‘closed’ by ‘open’ in the first definition above then we have an
open-neighborhood anti-Sperner graph, which we call a NAS graph. These graphs
were introduced by Porter in [6], and studied further in Porter and Yucas [7], and in
McSorley [4]. Our CNAS graphs are a natural variation of these graphs.

Both NAS and CNAS graphs are interesting because their definitions are quite nat-
ural; they also have connections with graphs which have been previously studied
in Sumner [11] and Lim [3], see Section 4 of this paper. Many natural questions
concerning extremal properties, girth, chromatic number— indeed almost any graph
parameter or property— can be asked of these graphs; some such questions will be
considered in future research. There is also an interesting connection with Cayley
graphs (see McSorley [5]).

In this paper we are mainly concerned with proving some simple properties of CNAS
graphs, and constructing CNAS graphs:

In Section 2 we construct a family of connected CNAS graphs with n vertices for
each fixed n > 2. We classify all connected CNAS graphs with < 6 vertices using
these families, and find the smallest connected CNAS graph that lies outside these
families.

In Section 3 we return to NAS graphs and indicate how some, but not all, CNAS
graphs on a fixed number of n > 2 vertices can be constructed from a suitable NAS
graph also on n vertices, thus establishing a link between the two different types of
graphs.

Section 4 contains preparatory material for Section 5, in which we present an algo-
rithm to construct all CNAS graphs on a fixed number of n > 2 vertices from labelled
CND graphs on < n — 1 vertices. This is similar to an algorithm that constructs
NAS graphs from labelled ND (neighborhood distinct) graphs in McSorley [4].

Standard definitions of graph theory are from West [12].

2 Properties of CNAS graphs, families of CNAS graphs,
small CNAS graphs

We first show some elementary properties of connected CNAS graphs; these proper-
ties are similar to the properties of NAS graphs proved in Sections 1 and 2 of [7].
Here §(G) denotes the minimum degree of G, and g(G) denotes the girth of G.



CLOSED-NEIGHBORHOOD ANTI-SPERNER GRAPHS 65

Theorem 2.1 Let G be a connected CNAS graph onn > 3 vertices. Then 6(G) > 2.

Proof. Suppose that 6(G) =1 and let u € V(G) have degree 1. Let v be the unique
neighbor of w. Now v is adjacent to its closed-parent v?, and, since n > 3, then
v? # u. So {u,v} C Ng[v?], i.e., wP € E(G), a contradiction since the degree of u
is 1. n

Theorem 2.2 Let G be a connected CNAS graph onn > 3 vertices. Then g(G) = 3,
t.e., G contains a triangle.

Proof. Since G is connected and 6(G) > 2 then G must have a cycle of length > 3.
Suppose ¢g(G) = g > 4, and let ujus...ug be a g-cycle. Now either «} lies on this
cycle, or it doesn’t. In the first case, without loss of generality let u} = u;, then
uuz € E(G), i.e., ujusus is a 3-cycle, a contradiction. In the second case u} lies off
this cycle. But then both uauf € E(G) and uiu € E(G), and so ujusu is a 3-cycle,
a contradiction. Hence ¢g(G) = 3. ]

Theorem 2.3 Let G be a connected CNAS graph on n > 2 wvertices. Then G
contains no cut-vertices, i.e., G is 2-connected.

Proof. Let u be a cut-vertex with closed parent u?. Let C; and Cy be 2 components of
G —u with v; € C and vy € Cy, and with uvy, uvy € E(G). Now either u? € {vi, vy}
or u? & {v1,vy}. First, say u? = vy, then vyv; is a v;—vs path in G—u, a contradiction.
Similarly in the second case viuPvs is a v; — v9 path in G — u, again a contradiction.
Hence G contains no cut-vertices. [ |

For n > 1 let K, denote the complete graph on n vertices. For m > 2 let S,, be
a connected or disconnected graph on m vertices, with no isolates. For n > 2 and
2 <m <nlet K,\Sm = K, — E(Sy,) denote the complete graph K, with the edges
of S,, removed. Finally, in any graph on n > 2 vertices, call a vertex full if it has
degree n — 1.

We are primarily interested in connected CNAS graphs, since each component in a
disconnected CNAS graph must itself be CNAS.

Theorem 2.4 Let G be an arbitrary graph on n > 2 vertices with at least two full
vertices. Then G is a connected CNAS graph.

Proof. Clearly G is connected. Let v and v € V(G) be two full vertices then Ng[u] =

Ng[v] = V(G), the whole vertex set of G. So vertex w is a closed-parent of all
vertices in V(G)\{u}, and v is a closed-parent of u. Hence every vertex in V(G) has
a closed-parent, and so GG is CNAS. n

In particular, for n > 2, the complete graph K, is CNAS. Furthermore, we may
preserve the CNAS property by removing edges from K, provided that we always
leave at least two full vertices:
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Corollary 2.5 For anyn > 2 and any m with 2 <m <n — 2 let S,, be a graph on
m vertices with no isolates. Then K,\Sp, is a connected CNAS graph. [

Indeed, we can classify incomplete connected CNAS graphs on n vertices with at
least two full vertices:

Theorem 2.6 Forn > 2 let G # K, be a connected CNAS graph on n vertices with
at least two full vertices. Then there is a graph S,, on m vertices with no isolates
where 2 < m < n — 2 such that G = K,\Sn.

Proof. Let {uy,us,...,uy} be the non-full vertices of G, since G # K, then m > 2.
And let {umt1, ..., un} be the full vertices of G, the number of these is n — m > 2,

so m < n — 2. Consider a copy of K, with vertex set {uy, us,...,un}, and the K,
with vertex set {u1,us,...,uy}. Let Sy = Guy,uz, ..., up], where the complement
is taken in the above K. Now if u; is an isolate in S, then in Gluy,uz, ..., un]
it has (full) degree m — 1 and so in G it is full, a contradiction. Hence Sy, has no
isolates. Then G = K,\Spm, and 2 <m <n — 2. n
Let

K \S = {K,} U{K,\Sn | Sm has m vertices and no isolates, 2 < m < n — 2}.

So, for each n > 2, we have a family K,,\S of connected CNAS graphs, each member
of which has at least two full vertices.

For those G outside these families we have:

Theorem 2.7 Let G be a connected CNAS graph on n > 2 vertices without at least
two full vertices. Then G has no full vertices.

Proof. Clearly G cannot have exactly one full vertex, because this full vertex would
not have a closed-parent; hence it has no full vertices. [

Example 1 From checking in Read and Wilson [9] there are exactly 20 connected
CNAS graphs G on n < 6 vertices. All except one, F, belongs to a family K,\S.
The graph F is shown below. It is the smallest connected CNAS graph that lies
outside these families, i.e., without at least two full vertices. So, from Theorem 2.7,
it has no full vertices, indeed it has 6 vertices and maximum degree 4.

Fig. 1. F, the smallest connected CNAS graph
without at least two full vertices
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3 CNAS graphs and Neighborhood anti-Sperner graphs

In this Section we show how to construct some CNAS graphs with a fixed number of
n vertices from NAS graphs with n vertices, thus establishing a connection between
the two different types of graph.

Let Fo(H) = {Ng(u)|u € V(H)} be the family of open-neighborhoods of a graph
H. We always drop the prefix ‘open’ in open-neighborhood, open-parent, open-twin,
etc.. Then if F,(H) is anti-Sperner we say that H is a neighborhood anti-Sperner
(NAS) graph. Hence, in a NAS graph H, for every u € V(H) there is a parent
uPe € V(H)\{u} such that Ng(u) C Ng(u?).

NAS graphs have been studied in [4], [6], and [7]. Because the definition of a CNAS
graph is similar to that of a NAS graph, we might sensibly ask whether we can
construct CNAS graphs from NAS graphs. However it doesn’t seem possible to
construct all CNAS graphs of order n from NAS graphs of order n, but some CNAS
graphs can be constructed:

For an arbitrary graph G, the set P C V(G) is a closed-parent-set if it is closed
under taking closed-parents, i.e., if every u € P has a closed-parent u? € P. And
a closed-parent-set partition of V(G) is a partition of V(G) into closed-parent-sets.
Similarly, for an arbitrary H, the set P, C V(H) is a parent-set if it is closed under
taking parents, i.e., if every u € P, has a parent u?> € P,. And a parent-set partition
of V(H) is a partition of V(H) into parent-sets.

Theorem 3.1 Let H be a NAS graph with {P, 1, Py, ..., Poa} a parent-set partition
of V(H). Let G = H™ be the graph obtained from H by making P,; into a clique
for each 1 < i < d, ie., by making G[Py;] = K\p,,|. Then G is a CNAS graph and
{Po1,Poa,-.., Poa} is a closed-parent-set partition of V(G).

Proof. For an arbitrary vertex u € V(G) = V(H) let u € P,; for some fixed 1,
so Ng[u] = Ng(u) U P,;. Now, in H, let u*> € P,; be a parent of u € P,;, so
Nglu?°] = Ng(u?*) U P,;. Hence, since Ng(u) C Ng(u?°), then Nglu] C Nglure],
i.e., ut> € P,; is a closed-parent of u in G. Hence (in G) B,; is a closed-parent-set.
Furthermore, since u € V(@) is arbitrary then G is CNAS. Each P,; is a closed-
parent-set of V(G), and so {Py1, Pss,..., P4} is a closed-parent-set partition of
V(G). ]

The null graph NV, is the graph with n > 1 vertices and no edges.

Example 2 See Fig. 2. We can construct many non-isomorphic CNAS graphs from
a single NAS graph. Consider the NAS graph H = N; U N; U K, on 6 vertices.
There are 5 different parent-set partitions of V/(H), yielding 4 non-isomorphic CNAS
graphs G = H™ on 6 vertices, 3 of which are connected.

The construction of Theorem 3.1 yields a CNAS graph G = H* with a closed-parent-
set partition of V(G) in which each closed-parent-set is a clique. However not all
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CNAS graphs have such a partition, and those that do not cannot be obtained via
this construction no matter which NAS graph H and which parent-set partition of
V(H) is used. The smallest CNAS graph without such a partition is K;\K,. Other
constructions of CNAS graphs from NAS graphs do not seem to be available. But
Theorem 3.1 is still useful for obtaining some CNAS graphs from NAS graphs, as
illustrated in Example 2.

NAS CNAS
H= NuN,UK,, G=H*

NESRE

Ko\K,,

Fig. 2. The CNAS graphs which can be obtained from
the NAS graph H = N; U Ny U K »; see Example 2
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4 Closed-Neighborhood Distinct graphs

This Section contains preparatory material needed in Section 5.

The join X VY of two graphs X and Y with disjoint vertex sets is the graph with
vertex set V(X)UV(Y) and edge set E(X)UE(Y)U{zy|z € V(X)andy € V(Y)},
i.e., every vertex in V(X) is joined to every vertex in V(Y).

Recall that a graph H is closed-neighborhood distinct (CND) if every closed-neighbor-
hood is distinct, i.e., if Ng[u] # Ng[v] when u # v, for all u and v € V(H).
Sumner [11] called such graphs point distinguishing and they are also known as su-
percompact, see Lim [3]. See also Entringer and Gassman [2] for further properties
of these graphs.

Sumner proved the following Theorem for graphs in which every neighborhood is
distinct, which he called point determining. But he stated that there is a dual
Theorem for CND graphs. We state his theorem using our notation, (see Theorem 2
of Sumner [11] and Theorem 2.1 of Chia and Lim [1]):

Let H be a CND graph with > 2 vertices. Then there is a vertex w € V(H) such
that H — w s also CND.

We use Sumner’s result in the following algorithm which constructs all CND graphs
on t vertices from CND graphs on ¢t — 1 vertices:

Algorithm CND Graphs A four step algorithm to construct all CND graphs H

on a fixed number of ¢ > 2 vertices from all CND graphs on ¢ — 1 vertices.

(1) List all non-isomorphic CND graphs H; ; on ¢t —1 vertices.

(2) For each H;; list all subsets S C V(H;—;) for which S # Ny, ,[u]
for all u€ V(H;_;), i.e., S is distinct from all closed-neigh-
borhoods of H;,_;. Note that S =0 is to be considered.

(3) Let w ¢ V(Hi—1) be a new vertex. For each such H;—; and S let H
be the graph with vertices and edges as follows:

V(H)=V(Hi-1)U{w} and E(H)=E(H;-1)U{ws|s € S},
t.e., H is the graph obtained by joining w to S.

(4) Remove isomorphic copies from the graphs in (3).

We now have a complete list of CND graphs H with t vertices, with no repeated H.
The CND graphs with < 3 vertices are Ny, Na, N3, and Ps.

Example 3 We find all CND graphs on 4 vertices from the two CND graphs N3
and P; on 3 vertices. For each such graph there are 23 —3 = 5 subsets S, yielding 10
CND graphs on 4 vertices. Removing isomorphic copies leaves the 5 non-isomorphic
CND graphs below:
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. e N

Fig. 3. All CND graphs on 4 vertices

Clearly we can then use these CND graphs on 4 vertices to construct all CND graphs
on 5 vertices, and so on. Hence, for any ¢ > 1, we can construct all CND graphs on
< t vertices.

We will need labelled graphs H in which every vertex u € V(H) has been labelled
with a positive integer ¢(u) > 1. We also need the concept of label-isomorphism:

Let H and H' be two arbitrary labelled graphs. Then H and H' are label-isomorphic
if there is a bijection between V(H) and V(H') which is a graph isomorphism that
preserves labels. So if in a label-isomorphism we have u € V(H) +» v’ € V(H'), then
(u) = ().

Finally, for an arbitrary graph G, if Ng[u] = Ng[v] for two different vertices u and
v € V(G) then w and v are closed-twins. We note that closed-twins are adjacent.
We denote a closed-twin of w by u*. If u has no closed-twin then it is closed-twinless.
If H is CND then every vertex in V(H) is closed-twinless.

5 Constructing CNAS Graphs from labelled CND Graphs

In this final Section we show how to construct all CNAS graphs G on a fixed number
of n > 2 vertices from labelled CND graphs H on < n — 1 vertices.

Let G be an arbitrary graph. Consider the following equivalence relation = on
V(G): v = if and only if Ng[u] = Ng[u']. The equivalence class containing u is
U={u € V(G)| Ng[u] = Ng[u']} # 0. Here every vertex u' is a closed-twin of u,
which we normally write as u*, provided that it is distinct from u. We let ¢ denote
the number of equivalence classes under = of V(G) (or of G); and denote the classes
themselves by Uy, Us, ..., U;, where |U;| = ¢; for each i = 1,2,...,t.

Theorem 5.1 Let G be an arbitrary graph with equivalence relation =. Let U and
V' be two distinct equivalence classes with w € U and v € V' arbitrary. Then

(i) the induced subgraph G[U] = Ky|,
(it) uwv € E(G) if and only if GIUUV] = G[U]V G[V] = Kjy| V Ky,

(iii) wv € E(G) if and only if GIUUV] = Kjgj U Kjy).
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Proof. (i) If |[U| = 1 then clearly G[U] = Kjy|. So assume that |U| > 2 and let
u and u* be two arbitrary distinct vertices in U. Then u € Ngl[u] = Nglu], i.e.,
uu* € E(G). Since v and u* are arbitrary, then G[U] = K|y

(ii) Now u € U and v € V are arbitrary, let «' € U and v' € V also be arbitrary,
(so v = v and/or v = v’ is allowed). Since wv € E(G), so v € Nglu] = Ng[u'],
so u' € Ngl[v] = Ng[v'], and then v'v' € E(G). Hence GIUUV] = G[U]V G[V] =
Ky V K}y, using (i). The converse is clear.

(iii) Similar to (i), using (i) again. [
So, in any graph G and for any two distinct equivalence classes U and V, either

GUUV]= KV K| or GIUUV] = Ky U K. This suggests the following two
constructions:

Construction G= Let G be an arbitrary graph, with equivalence relation = and
equivalence classes Uy, Us, . .., Uy, where |U;| = ¢; for each ¢ = 1,2,...,¢. Construct
a labelled graph G= with t vertices, and edges as follows:

V(Gz) = {U1, Uy, ..., U} and E(G=) = {U;U; | G[U; U U] = Ky, V Ky, ),

where vertex U; has been labelled with ¢; for each 7. We call G= the closed-reduced
graph of G. See [3] where an unlabelled version of this graph is called S(G). An unla-
belled version is also known as the Roberts reduct, see Roberts [10], and Section 10.6
of Prisner [8]. Note that |V(G)| = >_\_,

Construction H' Let H be an arbitrary labelled graph, so every u € V(H) has
been labelled with a positive integer £(u) > 1. Construct a new graph H' from H
by replacing each vertex u with the ¢(u) vertices from exp(u) = {z1,22,..., Tew},
the ezpansion set of u, where H'[ezp(u)] = Ky is a clique. Similarly, replace v
by exp(v) = {y1,¥2,- .-, V() }, ete.. If wv € E(H) then let H'[exp(u),exp(v)] =
Ky V Ky, and if wv ¢ E(H) then let H'[exp(u), exp(v)] = Kyuy U Ky).

We illustrate these constructions with F below. The equivalence classes of F' under
= are: U1 = {.701}7 U2 = {yl,yg}, U3 = {21722}, and U4 = {tl}

¢ Ue1l
Y Y Ue2
F <> F
z Z Ue2
4 Ue1l

Fig. 4. Illustrating constructions G= and H'

From the above two constructions we have:
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Theorem 5.2 Let G be an arbitrary graph. Then G = (G=)'. L]

Given an arbitrary graph G, as we closed-reduce to G= we identity vertices with the
same closed-neighborhood, so G= should be CND (Theorem 3.1 of [3]):

Theorem 5.3 Let G be an arbitrary graph. Then G= is CND.

Proof. Let U and V be two distinct vertices in V(G=). Suppose that G= is not
CND and Ng_[U] = Ne_[V] = {U,V,U;,Us,..., Uy} for some d > 1, or Ng_[U] =
Ne[V]={U,V}.

In the first case let v € V(@) lie in equivalence class U, then, since Ng_[U] is a
clique, we have Ng[u] = UUV U(UJi_, Uy). Similarly, if v € V then Ng[v] = VUUU
(U%_, Ur). Hence Ng[u] = Ng[v] sou = v, a contradiction since u € U and v € V and
U # V. Thus G= is CND. The proof is similar when N¢_[U] = No_[V] ={U,V}. =

The following two technical Lemmas are required before our main results:

Lemma 5.4 Let H be an arbitrary labelled CND graph with t > 1 vertices. Then
H' has t equivalence classes under =.

Proof. Let H' have s equivalence classes under =, we will show that s = .

Let each vertex v € V(H) be labelled with ¢(u) > 1. The Lemmais clearly true if ¢ =
1. So assume that ¢ > 2 and let u and v be distinct vertices in V/(H). In the construc-
tion of H' from H we replace u by the {(u) vertices from exp(u) = {z1,22, ..., Tyw },
and we replace v by the {(v) vertices from exp(v) = {y1, ¥2, . ., Ye(w) }. Let x; € exp(u)
and y; € exp(v) be arbitrary. Now, since H is CND, we have Ng[u] # Ng[v]. With-
out loss of generality let w € Ny[u]\Ng[v] and let exp(w) = {z1,22,..., 2¢w) }»
(w = w is allowed). If w # u then, in H', we have x; € Nyt[z1] but y; € Ny1[a1].
So Nyt[xi] # Nyt ly;], and so x; # y; in H'. So x; and y; are in distinct equivalence
classes of H'. Now let V(H) = {uy,us,...,u;}. We can apply the above argument
to every distinct pair u, and u, € V(H), showing that exp(u,) and exp(us) are con-
tained in distinct equivalence classes of H'. Hence t < s. A slight modification of
this argument is required if w = w.

Suppose s > t. Let eg, e, ..., es be representatives of the s equivalence classes under
=in H', one from each class. Then, by the pigeon hole principle, there must be some
vertex u € V(H) whose expansion set exp(u) contains two of ej, es, ..., es. Suppose
that e, and e, € exp(u) where 1 < a < b < s, then Nyr[e,] = Nytrles], i-e., ea = €
in H', a contradiction. Hence s < t. And so s = t. [
In an arbitrary graph G we say that vertex u € V(G) is closed-parentless if u does

not have a closed-parent. And if u does have a closed-parent u? with Ng[u] C Ng[u?]
then we call u? a proper closed-parent of u.

In the following Lemma, as usual, we denote the equivalence class under = containing
u by U, and the equivalence class containing u? by U®.
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Lemma 5.5

(i) In an arbitrary graph G let u? be a proper closed-parent of u. Then, in G=, UP
is a proper closed-parent of U.

(it) For a CNAS graph G let W € V(Gz) be closed-parentless. Then (W) > 2.

Proof. (i) In G since u” is a proper closed-parent of u then Ng[u?] # Ng[u], and so
UP £ U, i.e., in G= the vertices U? and U are distinct, and UPU € E(G=).

We first show that UP is a closed-parent of U. If not, then there exists a vertex
V with V€ Ng_[U] but V ¢ Ng_[UP]. Now V # U since UPU € E(G=) and so
U € Ng_[UP], and V' # U? since U? € Ng_[U?]. Let v € V(G) be in equivalence
class V. Then v € Ng[u] but v € Ng[u], a contradiction since u? is a (proper)
closed-parent of u. So, in G=, U? is a closed-parent of U. Now G= is CND so U?
cannot be a closed-twin of U, but it is a closed-parent of U, so it must be a proper
closed-parent of U.

(ii) Let W € V(G=) be closed-parentless, then W has no proper closed-parents in
G=. Let w € V(QG) lie in equivalence class W, so, by (i), w has no proper closed-
parents in G. But G is CNAS so w must have a closed-parent which must be a
closed-twin w*, so |W| > 2, i.e., (W) > 2. n

The following main result deals with both connected and disconnected CNAS graphs.

Theorem 5.6 Let G be an arbitrary graph. Then G is a CNAS graph with t equiv-
alence classes under = if and only if G= is a labelled t vertex CND graph in which
all closed-parentless vertices have label > 2.

Proof. First let G be a CNAS graph with ¢ equivalence classes under = given by
Uy, Uy, ..., U, where |U;| = {; for each i = 1,2,...,t. Then the construction of G=
from G and Theorem 5.3 shows that G= is a labelled ¢ vertex CND graph. From
Lemma 5.5(ii) all closed-parentless vertices in G= have label > 2.

Conversely suppose that G= is a labelled t vertex CND graph in which all closed-
parentless vertices have label > 2. From Theorem 5.2 we have G = (G=)". Now any

vertex u € V(G) is au;j € exp(U) = {u1, ug, ..., ugu)} for some U € V(G=), and the
closed-neighborhoods Ngu;] for j =1,2,...,¢(U) are all equal. Either {(U) =1 or
LU) > 2. If {(U) = 1 then U is not closed-parentless and so U has a closed-parent
U?, and then u; has a closed-parent in exp(U?). If {(U) > 2, then each u; has a
closed-twin, which is a closed-parent. Hence, in either case, u = wu; has a closed-
parent, and so G is CNAS. Furthermore, since G= is a t vertex CND graph then,
from Lemma 5.4, the graph G = (G=)' has ¢ equivalence classes under =. "
For connected graphs we have:

Lemma 5.7 Let G be an arbitrary graph. Then G is connected if and only if G=
s connected.
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Proof. Let G be connected. To see that G= is connected, let U and V' be two different
vertices of G=, and let v € U and v € V in . Then, since G is connected, there is
a path u = wyws - - - wy = v between v and v in G, but then U = WiWy---W; =V
is a walk between U and V in G=, and so G= is connected. The converse is proved
similarly. [

Using Lemma 5.7 we have the following ‘connected’ version of Theorem 5.6:

Theorem 5.8 Let G be an arbitrary graph. Then G is a connected CNAS graph
with t equivalence classes under = if and only if G= is a connected labelled t vertex
CND graph in which all closed-parentless wvertices have label > 2.

[

We need another definition: Let n > 2 be a positive integer. A partition of n is
aset P = {l,0ls,...,0;} of t > 1 integers that satisfy 1 < ¢; < lp-+- < ¢; and
S°!_, ¢; = n. Partition P has t parts.

We now present an algorithm to construct (connected) CNAS graphs G from (con-
nected) labelled CND graphs H. It uses Theorems 5.6 and 5.8 where we denote
G= by H, and consider all possible (connected) labelled CND graphs H, and then
construct all possible (connected) CNAS graphs G by using G = H'.

Let the labels on the t vertices of H = G= be {¢1,(,...,¢;}, where each ¢; > 1. If G

is CNAS with n > 2 vertices then a vertex u € V(G) of maximum degree must have
a closed-twin, so |U| > 2. So some ¢; > 2, and since n = Z§=1 l;, then t <n —1.

Algorithm (Connected) CNAS Graphs A four step algorithm to construct all
(connected) CNAS graphs G on a fixed number of n > 2 vertices from all (connected)
labelled CND graphs H on 1 <t < n — 1 vertices.

For each fixed t=1,2,...,n —1:

(1) By repeated use of Algorithm CND Graphs, (suitably modified to
generate connected CND graphs if required), list all non-
isomorphic (connected) CND graphs H; on t vertices.

(2) List all partitions P; of n with ¢ parts.

(3) For each (connected) graph H; and partition P; = {{1,l2,...,l},
label its ¢ vertices with {{1,{s,...,0;} in all possible non-label
isomorphic ways, ensuring that all closed-parentless vertices
have label > 2.

(4) For each (connected) labelled graph H; construct G = HtT.

Because of Theorems 5.6 and 5.8 we have a complete list of (connected) CNAS graphs
G with n vertices, with no repeated G. We also note that because of the extensive
computation required in Steps (1), (2), and (3) the above algorithm is not an efficient
way to construct all CNAS graphs on a fixed large number n of vertices.
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Example 4 See Fig. 5. We illustrate Algorithm Connected CNAS Graphs for
n = 5. From the Algorithm we need to consider all connected CND graphs H; on
1 <t < 4 vertices. These graphs H,; are shown below, suitably labelled. Two such
H; cannot be labelled since closed-parentless vertices, indicated by ¢p, require a label
of greater than or equal to 2, thus forcing the sum of all labels to be greater than 5.

CND CNAS
H G

- o«
H 1.2 2 — @ K\ P
—> @ KAK,

o—0—0
cp ¢p
H, Cannot be expanded
21 21
1
H, 2 3 KAK,
1 1
cp cp
H, D Cannot be expanded
cp cp

Fig. 5. The connected CNAS graphs on 5 vertices, illustrating Algorithm
Connected CNAS Graphs for n = 5, see Example 4
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