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Abstract

Levit and Mandrescu showed that independence polynomials of cen-
tipedes are unimodal and further conjectured that polynomials have only
real zeros. In the present paper we verify this conjecture. And we also
show that the independence polynomials of caterpillars are unimodal.

1 Introduction

Let G = (V, E) be a simple graph with the vertex set V and the edge set E. An
independent set in G is a set of pairwise non-adjacent vertices. The independence
number of G, denoted by «(G), is the maximum cardinality of an independent set
in G. Let i;(G) denote the number of independent sets of cardinality k in G. The
polynomial

a(G)
> i@k, dg=1
k=0

is called the independence polynomial of G, denoted by I(G,z) or G(z).
Let ag,ay,...,a, be a sequence of nonnegative numbers. It is unimodal if there
is some m, called the mode of the sequence, such that

ag S ap < L1 S Ay 2 Qg 2700 2 Ay

It is log-concave if a? > a;_1a;1q for all 1 < i < n — 1. It is symmetric if a; = an_;
for 0 < ¢ < n. Clearly, a log-concave sequence of positive terms is unimodal and a
symmetric unimodal sequence has its maximum at the middle terms.

We say that a polynomial 22:0 apz® is unimodal if its coefficients ag, aq, ..., a,
form a unimodal sequence. The mode of the sequence ag,ayq,...,a, is also called
the mode of the polynomial y";_, axz*. The following result is well-known (see [7,
p- 104] for instance).
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Newton Inequality. Let ag,aq,...,a, be a sequence of nonnegative numbers. Sup-
pose that its generating function y y_, apz® has only real zeros. Then

k+1n—-k+1

Tﬁ, k:1,2,...,n—1.

2
ay, 2 Qp_10p41

(The sequence is therefore log-concave and unimodal with at most two modes.)

The positive matching polynomial of a graph G can be, in a certain sense, re-
garded as the independence polynomial of the line graph of G [5, Proposition 1]. It
is well-known that the matching polynomial of any graph has only real zeros [8, 11].
Wilf asked whether independence polynomials also enjoy the same property. Hami-
doune [6] showed that the independence polynomial of claw-free graph is unimodal
(a graph is claw-free if it has no subgraph isomorphic to Kj3). Chudnovsky and
Seymour [4] showed further that the independence polynomials of claw-free graphs
have only real zeros. However, Alavi et al. [1] provided examples to demonstrate that
independence polynomials are not even unimodal in general. They also proposed the
following conjecture.

Conjecture 1. [1] The independence polynomial of any tree or forest is unimodal.

So far, the conjecture has been proved for some special classes of trees. For exam-
ple, Levit and Mandrescu [9] settled the conjecture for centipedes. A centipede W, is
a tree with the vertex set V = AU B, where A = {ay,...,a,},B = {b1,...,b,},AN
B = (, and the edge set E = {a;b; : 1 < i < n}U{aa;41 : 1 < i <n—1} (see
Fig. 1). They further conjectured that the independence polynomials of centipedes
have only real zeros. The first object of the present paper is to verify this conjecture.

Theorem 1. The independence polynomials of centipedes have only real zeros.

ay 45 az an—1 Qn

bl b2 b3 bnfl bn
Fig. 1. The centipede W,

The second object of this paper is to settle Conjecture 1 for caterpillars. A cater-
pillar H, is a tree with the vertex set V- = AU(U%L, B;) where A = {ay,...,a,}, B; =
{bgi),bg)}, and the edges set £ = {a;a;41 : 1 <i<n-1}U {aibg-i) :1<i<n,1<
J < 2} (see Fig. 2). Our result is the following.

Theorem 2. The independence polynomials of caterpillars are symmetric and uni-
modal.
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b(l) b(21) ng) béZ) b(lnfl) b(2”*1) bg”) b(”)
Fig. 2. The caterpillar H,

2 Proof of Theorem 1

To prove Theorem 1, we need the following results.

Lemma 1. (Levit and Mandrescu [9]) Let W, () be the independence polynomial of
the centipede W,,. Then Wy(x) satisfies the recurrence relation

Wa(z) = (1 + 2)[Waoi(z) + 2Waoa(2)],
with Wo(z) =1 and Wi(z) =1+ 2.

Let f(z) and g(z) be two real polynomials with deg f = n — 1 and degg = n.
Suppose that both f(z) and g(z) have only real zeros and that the zeros rq,...,7,_1
of f(z) and the zeros si, ..., Sn—1, 8, of g(x) satisfy

$n STp1 S Sp1 - S 83 S S s
Then we say that f(z) interlaces g(x).

Lemma 2. (Heilmann and Lieb [8]) Let f(z),g(z) be two real polynomials with
positive leading coefficients and deg f = degg — 1. Suppose that both f(x) and g(z)
have only real zeros and that f(x) interlaces g(x). Then the polynomial f(x) + g(x)
has only real zeros. Moreover, the zeros si, ..., s, of g(x) and the zeros ty,...,t, of

f(x) + g(z) satisfy
b < 8p Stpo1 <81 <0 <ty <8 <1y <510

Proof of Theorem 1. Let J,(x) = 2"W,(1/z) be the reciprocal polynomial of W,(z).
It follows from Lemma 1 that the sequence {J,(z)} satisfies the recurrence relation

In() = (2 + 1[I (2) + Joa(@)] (1)

with Jy(z) = 1 and Ji(z) = « + 2. Obviously, J,(x) is a monic polynomial of degree
n. It is also clear that W, () has only real zeros if and only if J,(z) does. So, to show
the statement, it suffices to show that J,(z) has only real zeros. In what follows, we
show that for n > 1, J,(z) has only real zeros and J,_; interlaces J,(z). We proceed
by induction on n.
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It is obvious that Ji(z) interlaces Jy(z) since Jo(z) = (z + 1)(z + 3) by (1).
Now assume that both J,_»(x) and J,_;(x) have only real zeros and that J,_»(z)
interlaces J,,_1(x). Then J,_1(x) + J,—2(x) has only real zeros by Lemma 2, and
so does J,(z) by (1). By Lemma 2 again, the zeros si,...,s,—1 of J,_1(z) and the
z€ros ti, ..., tp—1 Of Jp_1(x) + Jy_o(x) satisty

th1 S Sn1 Stpz S Sp2 < oo <82 <y <8y (2)

However, J,(z) > 0 for > —1 from the recurrence relation (1). Hence —1 is the
largest zero of J,(x) for n > 2. Thus J,_;(z) interlaces J,(z) by (2), as desired. O

Remark 1. Let G be a forest all of whose components are centipedes. Then the
independence polynomial of G is the product of the independence polynomials of
such centipedes. It follows from Theorem 1 that G(x) has only real zeros. Thus
G(z) is unimodal. It is worth noticing that this result cannot be followed from Levit-
Mandrescu’s result about the unimodality of independence polynomials of centipedes.

3 Proof of Theorem 2

Let G = (V,E). For X C V, we denote by G[X] the subgraph of G spanned
by X, and by G — X the subgraph G[V — X]. For v € V, let N[v] = {w : w €
V and vw € E} U {v}.

The disjoint union of the graphs G, G5 is the graph G = G; U G, with a ver-
tex set the disjoint union of V(Gi),V(G2) and an edge set the disjoint union of
E(G4), E(G>). It is well-known that

I(G1UG27$):I(Gl,x)'I(G27I) (3)
and
I(G,2) = I(G — {v},z) + «I(G — N[v],z), (4)
See [3, 5] for more properties of independence polynomials of graphs.
Lemma 3. The independence polynomial Hy(x) of the caterpillar H, satisfies the
recurrence relation:
Hy(z) = (14 2)*[Hyp-1(2) + 2 Hn ()], (5)
with Hy(x) = 1 and Hy(z) =z + (1 + z)2.
Proof. By definition we have Hy(x) = 1 and H,(x) = 1+ 3z +2*. Now let n > 2.
Then it is clear that H, — {a,} = H, 1 UK, and H, — Nla,] =H, UK, (see
Fig. 2), where K, is the empty graph of order 2. Note that I(K,,z) = (1 + z)°.
Hence we have by (3) and (4)
I(H,,z) = I(H,—{an},z)+zI(H, — Nla,],z)
I(H,y UKy, z)+2l(H,_» UK, )
= (1+2)*[(H,_1,2) +2(1 +2)°I(H,_s,7)
= (L+a)*I(Hy1,) + 2xl(Hy 9, )]
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Thus the proof is complete. a

Remark 2. From (5) and by induction, we have deg H,(x) = 2n, which can also be
obtain by definition.

Lemma 4. (Andrews [2]) If p(z) and g(z) are two polynomials with nonnegative,
symmetric and unimodal coefficients, then the same is true of their product.

Proof of Theorem 2.  We use induction on n. The result is obviously true for n =
0,1 since Ho(z) = 1 and Hy(z) = 14+ 3z+2? Now suppose it to be true forn < k—1
and consider the case n = k.

Let Hy_i(z) = 32 %z’ and Hy_y(x) = 7% bz, Then by the induction
hypothesis, Hy—1(z) and Hy_»(z) are symmetric and unimodal:

ag = Agg—2 < a1 = Agp-3 < -0 S ap2 = ap < Apo

and
bo =bop-a < by =byp 5 < - - S b3 =0p1 < bya.

Thus the polynomial

2%-3
Hy_y(x) + o Hy_(x) = ag + Z(ai +bi1)xt + agy oz

i=1

is symmetric and unimodal. It is well-known that the polynomial (1+z)? is symmet-
ric and unimodal. Hence Hy(z) = (1 + z)*[Hg_1(z) + vHj_o(7)] is also symmetric
and unimodal by Lemma 4. This completes the proof of the theorem. a

4 Remarks

A vertebrate V™ is a tree with the vertex set V = AU (™, B;), where A =
{ai,...,an},B; = {bgi),..., %?}, and the edges set F = {a;a;41 : 1 <i<n-1}U
{at’:1<i<n, 1<j<m}.

For m =0,1,2, n(m) is the path P, with n vertices, the centipede W, and the
caterpillar H, respectively. It is known that their independence polynomials are
unimodal (see [6, Proposition 2.5], [9, Theorem 2.5] and Theorem 2).

By the same method used in the proof of Lemma 3, we obtain that the indepen-
dence polynomials of vertebrates satisfy the recurrence relation

VM (2) = (1+2)" [V, (@) + 2V, (2)] (6)

with V™ (z) = 1 and V"™ (z) = 2 + (1 + 2)™.
We can also give an explicit expression of the number ik(Vn(m)) of independent sets
of cardinality £ in ym by the following method. For each k, select k independent el-

ements from the vertex set of size (n+1)m of ™ in g, two-stage process. First, let us
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choose j independent elements from the n-set {ai,...,a,}. Then select the remain-
ing (k — j) independent elements from the nm-set ). ._.,b(l) By
The number of ways in which we make two choices are (”_jﬂ) and (m Tijj )) respec-

tively. So, the total number of ways of ending up with k-independent sets from the

(n+ 1)m-set by this process is
D= () g

Jj=0

In the case m = 2, we have deduced that V™ (z) is unimodal from (6) (Theo-
rem 2). This result can also be followed directly from (7). However, for m # 2 it is

not easy to show that Vn(m)(a:) is unimodal from (6) and (7), even for m = 1 ([9]).
In fact, the independence polynomials of the vertebrates with m > 2 have not only
real zeros, so we must be satisfied with unimodality.
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