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Abstract

We give a method for constructing symmetric Hamiltonian double Latin
squares from groups that have a symmetric sequencing. This allows us
to find orthogonal pairs of symmetric Hamiltonian double Latin squares
of order 2p for all primes p congruent to 3 modulo 4. We also show that
there is a triple of mutually orthogonal symmetric Hamiltonian double
Latin squares of order 18.

1 Introduction

A Latin square of order n is an n X n array of n symbols with the property that each
symbol occurs once in each row and once in each column. A double Latin square of
order 2n is a 2n X 2n array of n symbols with the property that each symbol occurs
twice in each row and twice in each column.

Let A be a double Latin square of order 2n on symbol set 2. Consider a
symbol k£ € Q and suppose that A(i1,j1) = k. We can uniquely produce a cycle
(i1, J1), (31, Ja), (42, 42), (32, Js), - - -, (41, J1), (i1, 41) of cells of A where each of these cells
contains the symbol k. By repeating this procedure for all the cells containing k& we
get a set of disjoint cycles of total length 4n. If this set contains just one cycle then
that cycle is called Hamiltonian. If each symbol of Q gives rise to a Hamiltonian
cycle then then the double Latin square A is also called Hamiltonian.

Example 1.1 The double Latin square A of order 4 in Figure 1 is Hamiltonian.

The Hamiltonian cycle associated with the symbol 1 is
(1,1),(1,2),(4,2),(4,3),(3,3),(3,4),(2,4), (2,1).

A Hamiltonian double Latin square A is symmetricif A(i,j) = A(j, i) for all pairs
(7,7). The Hamiltonian double Latin square in Figure 1 is symmetric. Following
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Figure 1:

Hilton et al. [13] we use SHLS(2n) for “symmetric Hamiltonian double Latin square
of order 2n.”

Let K3, denote the complete graph on 2n vertices. A Hamiltonian path of K, is
a path which visits each vertex exactly once. Symmetric Hamiltonian double Latin
squares are connected to Hamiltonian paths in complete graphs by the following
result.

Theorem 1.1 [13] An SHLS(2n) is equivalent to a decomposition of Koy into Hamil-
tonian paths. O

The equivalence arises as follows. We first obtain a Hamiltonian path decompo-
sition of K>, from an SHLS(2n) A on symbol set 2. Label the vertices of the graph
with the symbols 1,2,...,2n. For each a € Q define a subgraph H, of K,, by the
following rule:

(,7) is an edge of H, if and only if A(i,j) = a.

Each H, is a Hamiltonian path and, as H, and Hz have no edges in common when
a # B, the set {H, : @ € Q} is a Hamiltonian path decomposition of Ko,.

For the converse suppose that {H, : a € Q} is a Hamiltonian decomposition of
Ks,. For each H, put symbol « in cells (4, ) and (j,¢) whenever (i, 7) is an edge in
H,. Also put « in cell (4,7) whenever i is a vertex of degree one in H,. This gives
an SHLS(2n).

In [13] a method is given for constructing SHLS(2n)s using cyclic groups of even
order. In the next section we see that the cyclic group of this construction can
be replaced by an arbitrary group that has a single involution. We also note that
symmetric Hamiltonian double Latin squares are related to particular types of Tuscan
square and row-complete Latin square.

Consider two double Latin squares, A and B, of order 2n on the same symbol set
2. Then A and B are orthogonal if for each ordered pair (e, ) of symbols from 2
there are precisely four ordered pairs (7, j) such that A(i,j) = a and B(i,j) = S.

Figure 2 gives a pair of orthogonal symmetric Hamiltonian double Latin squares
of order 6.

Hilton et al. [13] show that there exists a pair of mutually orthogonal SHLS(2%n)s
forany k > 1 and n € {1,3,5,7,9,11,13}. In Section 3 we extend the set of possible
values of n to include 15, 17 and all primes congruent to 3 modulo 4. We also
demonstrate the existence of a triple of mutually orthogonal SHLS(18)s.
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Figure 2: A pair of orthogonal SHLS(6)s

2 Group-based SHLS(2n)s

As we saw in the previous section, a Hamiltonian path decomposition of K, is
equivalent to an SHLS(2n). Here we mention some other combinatorial objects
which are related to Hamiltonian path decompositions and note one well-known
construction that provides many examples of symmetric Hamiltonian double Latin
squares.

An Italian square of order n is an n X n array of n symbols with the property that
each symbol occurs exactly once in each row. A Tuscan square is an Italian square
in which each pair of distinct symbols occur as horizontal neighbours twice, once in
each order. A Tuscan square which is also a Latin square is called a row-complete
Latin square. We write RCLS(n) for “row-complete Latin square of order n”. An
Italian square is called row-reversible if each row is the reverse of some other row.
Necessarily, row-reversible Italian squares must have even order.

Golomb and Taylor [11] introduced Tuscan squares as a way of representing
Hamiltonian path decompositions of complete directed graphs. To see the equiv-
alence between these objects label the vertices of the graph and with the symbols
of the Tuscan square and obtain a set of Hamiltonian paths, one for each row, by
taking the entries of that row in order. As the square is Tuscan each edge will appear
exactly once. Clearly, this process can be reversed to get a Tuscan square from a
Hamiltonian path decomposition of the complete directed graph. The Hamiltonian
paths in the decomposition will come in pairs, one the reverse of the other, if and
only if the associated Tuscan square is row-reversible. So we have:

Lemma 2.1 [11] A Hamiltonian path decomposition of Ko, is equivalent to a row-
reversible Tuscan square. O

Theorem 2.3.1 of [9] gives a construction of a RCLS(2n) for each n. It is noted
[9, pp. 300-301] that this gives a Hamiltonian path decomposition for Ky, for all n.

We now introduce some concepts that allow us to construct row-reversible Tuscan
squares. In fact, all of these squares are Latin.

Let G be a group of order n. Let a be an arrangement (ag,az,...,a,) of the
elements of G, and set b = (by, by, ..., b, 1) where b; = a; 'a;y; for 1 <i <n—1. If
b contains all of the non-identity elements of G then a is a directed terrace for G and
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b is a sequencing of G. If b, ; = b; ' for each i then the sequencing is symmetric.
In this case we will also call the directed terrace associated with the sequencing
symmetric. For a group to have a symmetric directed terrace it must be of even
order with a single involution. Following [15] we call such groups binary groups.
Note that if (a1, as,...,a,) is a directed terrace for G then so is the sequence
obtained by premultiplying each element by any g € G, denoted g(ay, as, ..., a,). If
a; is the identity of the group then the directed terrace is called basic. Given any
directed terrace we can produce a basic directed terrace by premultiplying by a;*.

Theorem 2.1 [12] Let G be a group of order n and a be a directed terrace for G.
Then the Latin square with rows {ga : g € G} is an RCLS(n).

Proof: A square with these rows is the Cayley table of G, and so is Latin. Let = and
y be distinct elements of G. Then there is exactly one value of i with a; 'a;,; = 27 'y.
Set h = za; ' and consider the row ha. The ith entry of this row is za;'a; = z and
the (i + 1)st entry is za; 'a; 11 = vz 'y = y. So we have found an occurrence of the
ordered pair (x,y) in the square. As z and y were arbitrary choices we must have
that every ordered pair of distinct elements appears in the square. Therefore the
square is row-complete. O

If the directed terrace is symmetric then we get the desired row-reversibility
property.

Theorem 2.2 [8] Let G be a binary group of order 2n and a be a symmetric directed
terrace for G. Then the Latin square with rows {ga : g € G} is a row-reversible

RCLS(n).

Proof: Let A be a square whose rows are {ga : g € G}. Theorem 2.1 says that A is
an RCLS(2n).

Let a = (a1, a2,...,02,) and let z be the involution of G. Then z must be in
the centre of G as it is the only element of order 2. As a is symmetric we have
Qon—i = a;2 for 1 < i < n.

Consider the rows ha and hza. The ith entry of ha is ha; and the (2n — i)th
entry of hza is hzas, ; = hza;z = ha;. So hza is the reverse of ha. O

Example 2.1 The following symmetric directed terrace for the (additively written)
cyclic group Zs,, was used implicitly by Lucas (who gave credit to Walecki) in [14]
and given explicitly by Williams in [18].

a=(0,1,2n—-1,2,2n—2,3,...,n+1,n)
The associated symmetric sequencing is

b=(1,2n—2,32n—4,5,...,2,2n—1).
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Figure 3: A row-reversible RCLS(6)

Following [8] we call a the LWW directed terrace.
For Zs we have a = (0,1,5,2,4,3) and b = (1,4,3,2,5). Theorem 2.1 gives the
row-reversible RCLS(6) in Figure 3.

Example 2.2 [8] Let Q12 be the dicyclic group of order 12:

Qi = (u,w : u® = e, w? =, wu = v’w).

A symmetric directed terrace for Qqa is
(e, u, uPw, u®, uPw, vw, u*w, v w, u®, w, u*, u®)
whose associated symmetric sequencing is
Sw, whw, uPw, u®)

(u,u2w,uw,w,u4,u3,u2,u w,u W, uww,u

Figure 4 gives half of the rows of the row-reversible RCLS(12) obtained by applying
Theorem 2.1. The remaining rows may be found by reversing those given.

e v vww v dw ow vw Pw o ow wt W@
u W wtw e w  vw ww vw o oww Wb ud
W oW Ww v oww Wrw o w vrw uwt WPw e u®
w  uvw e ww  ut w? Wb v vtw wr vrw dPw
ww w v ww  uw W e v whw vt dPw tw
ww uww  uw: wdw e ut u ud w v vtw wPw

Figure 4: Half of a row-reversible RCLS(12)

Let G be a binary group of order 2n. Given a symmetric directed terrace for G
we can construct a row-reversible RCLS(2n) and hence a Hamiltonian path decom-
postion Ko, and finally an SHLS(2n). We call an SHLS(2n) obtained in this way
based on G. More generally, if it possible to obtain an SHLS(2n) from a symmetric
directed terrace of some group we call it group-based. Figure 5 gives the SHLS(12)
obtained from the symmetric directed terrace for Q12 given in Example 2.2. The
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e U u U U U w uw uUtw Utw vw utw
e |11 5 5 6 3 2 4 3 6 2 4
vw |12 2 6 6 4 5 3 5 1 4 3
v |52 3 3 4 41 6 1 6 2 5
w |56 3 1 1 5 6 2 4 2 4 3
vt |6 6 4 1 2 2 1 4 3 5 3 5
v |3 4 4 5 2 3 6 2 5 1 6 1
w |25 1 6 1 6 4 5 2 3 3 4
vwl|4 3 6 2 4 2 5 5 6 3 1 1
vwl(3 5 1 4 3 5 2 6 6 4 1 2
ww|6 1 6 2 5 1 3 3 4 4 5 2
vw|2 4 2 4 3 6 3 1 1 5 5 6
vwwl4 3 5 3 5 1 4 1 2 2 6 6

Figure 5: An SHLS(12) based on Q12

square has been bordered with the elements of ()12 to make the correspondence to
the row-reversible RCLS(12) clearer.

The method for constructing symmetric Hamiltonian double Latin squares given
in [13] is exactly equivalent to constructing SHLS(2n)s based on Zs,. They use the
terminology “n-procession” and “n-gradation.” In the vocabulary we are using, an
n-procession is a list of the first n elements of a symmetric directed terrace for Zs,;
an n-gradation is a list of the first n — 1 elements of a symmetric sequencing. Having
either the n-procession or the n-gradation is sufficient to reconstruct the symmetric
sequencing or symmetric directed terrace.

Much is known about symmetric sequencings for binary groups. It is known that
the quaternion group Qs does not have a symmetric directed terrace, but that every
other soluble binary group does [5]. Some insoluble binary groups are also known
to have symmetric directed terraces [6]. It is conjectured that Qs is the only binary
group which does not have a symmetric directed terrace [5].

Let G be a binary group with involution z. We use A(G) for (z), which is a
normal subgroup of G. There is a connection between “terraces” in G/A(G) and
symmetric directed terraces in G which we now outline.

Let H be a group of order n. Let a be the arrangement (ai,as, ..., a,) of the
elements of H and let b = (by, by, ..., b, 1), where b; = a; 'a;y; for 1 <i<n— 1.
Suppose that b contains each involution of H exactly once and for each element h
of H of order greater that 2 one of the following applies:

e h occurs twice in b and A~ does not occur,
e h and h~! both occur once in b,
e h~! occurs twice in b and h does not occur.

Then a is called a terrace for H and b is called a 2-sequencing for H.



SYMMETRIC HAMILTONIAN DOUBLE LATIN SQUARES 271

Example 2.3 The following is a terrace for Zopy1:
(0,1,2m,2,2m —1,3,...,m,m + 1).

Its associated 2-sequencing is (1,2m — 1,3,2m —3,...,2m — 1,1). This terrace was
first given by Williams in [18]. Due to the similarity with the LWW directed terrace
for cyclic groups of even order we call this the LWW terrace for Zom.1 -

Terraces were introduced by Bailey [7] to construct quasi-complete Latin squares.
They were used by Anderson [3] to construct symmetric directed terraces:

Theorem 2.3 [3] Let G be a binary group. Then G has a symmetric sequencing if
and only if G/A(G) has a 2-sequencing.

Proof: We outline the construction. Details of its correctness may be found in [3] or
[15].

Suppose that G has order 2n and involution z. Define ¢ : G — G/A(G)
to be the natural projection. If (by,by,...,by 1,2,07%,,...,b5%,07") is a symmet-
ric sequencing of G then apply ¢ to the ﬁrst n — 1 elements to get the sequence
(p(b1), d(ba), ..., P(b, 1)) of elements of G/A(G). This sequence is a 2-sequencing of
G/A(G).

Suppose now that we have a 2-sequencing (di, ds, . .., dn_1) of G/A(G). Construct
a sequence (by, ba, ..., b, 1) of elements of G as follows, where d; = {z;, z;2}:

e if d; has order 2 then either set b; = x; or set b; = z;2,

e if d; has order greater than 2 and d; = d; for some j # ¢ then either set b; = z;
and b; = ;2 or set b; = x;z and b; = x;,

e if d; has order greater than 2 and d; = d then either set b; = x; and b; = x;lz
or set b; = z;z and b; = x;

Extend (by,b2,...,b, 1) to a sequence (by,ba,..., b, 1) by setting b, = z and
bon_i = b;* for 1 < i <n—1. Then (by,bs,...,ba, 1) is a symmetric sequencing of
G. O

Note that this result gives many symmetric sequencings for G for each 2-sequ-
encing of G/A(G). If we obtain a symmetric sequencing b for G in this way from
a 2-sequencing d of G/A(G), then we say that b is a lift of d, and that d is the
half-projection of b. If a is a symmetric directed terrace associated with b and c is a
terrace associated with d then we also call a a [ift of ¢ and c the half-projection of a.

Example 2.4 The LWW directed terrace for Zs, is a lift of the LWW (directed)
terrace for Zy .
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Example 2.5 [8] The dihedral group of order 6, denoted Ds, is given by
Dg = (u,w : u* = e = w?, wu = v’w).

A terrace for Dy is (e,u, w, u?, u?w, uw), which has associated 2-sequencing (u, uw,
vw,w,u). We have Q12/A(Q12) = Dg. The symmetric sequencing for Q12 given in
Example 2.2 is a lift of the above 2-sequencing for Dg.

For each group of order at most 11, and for Z;3, the total number of terraces is
known. This can be used to calculate the number of symmetric directed terraces for
binary groups of order at most 22, and for Zys [8, 16]. Large numbers of terraces
for other small groups (order up to 20) are known [16] and hence many symmetric
directed terraces for binary groups (order up to 40) can be constructed.

As we have seen, row-reversible Tuscan squares are equivalent to symmetric
Hamiltonian double Latin squares. Several alternative constructions for row-revers-
ible Tuscan squares (not all of them Latin) are given in [8].

3 Constructing orthogonal SHLS(2n)s

Let G be a binary group of order 2n. Define two symmetric directed terraces
(a1,as,...,as,) and (c1,ca, ..., Cay,) to be orthogonal if

e a; =c; and a, = ¢,

e for each g € G there is a pair (i,7) with 1 <7< 2n—1and 1 < j < n such
that {a;, ai+1} = {g¢;, gcj1 }-

When {a;, a1} = {g¢;, gej} we have a; 'azn = (¢;'¢j1)*. So, as j < n, each
7 has a unique value of j associated with it, and different values of 7 in the range
1 < i < n give different values of j.

Example 3.1 In Zg, the two symmetric directed terraces (0,1,5,2,4,3) and (0,4,5,
2,1,3) are orthogonal.

Our first aim is to show that symmetric Hamiltonian double Latin squares con-
structed from mutually orthogonal symmetric directed terraces are mutually orthog-
onal (Theorem 3.2).

Let H be a subgraph of K,. Let E(H) denote the set of edges of H and V;(H)
denote the set of vertices of degree one of H. Two Hamiltonian paths H; and Hj of
K, are orthogonal if

2|E(Hy N Hy)| + |Vi(H1) N Vi(H)| = 4.

Two Hamiltonian path decompositions H; and Hy are orthogonal if each path of H;
is orthogonal to every path of H,. More on the orthogonality of graphs may be found
in [1].
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Theorem 3.1 [13] Two SHLS(2n)s are orthogonal if and only if their underlying
Hamiltonian path decompositions of K, are orthogonal. O

Theorem 3.2 Let a and c be orthogonal symmetric directed terraces for a binary
group G. Let A and C be the symmetric Hamiltonian double Latin squares con-
structed from a and c respectively. Then A and C are orthogonal.

Proof: By Theorem 3.1 it is sufficient to show that the Hamiltonian path decompo-
sitions given by a and c are orthogonal.

Let |G| = 2n, let e be the identity of G and let z be the involution of G. Let
a = (a1,0as,...,09,) and ¢ = (c1,Ca,...,Can). Choose a subset G of G with e € G
and for each g € G exactly one of g and gz is in G (note: |é| =nand z ¢ Q).
The Hamiltonian path decompositions of K, associated with a and c¢ are {ga :
g € é} and {hc : h € C:'} respectively. So we need to show that ga and ha are
orthogonal (as Hamiltonian paths) for each pair g,h € G. It is sufficient to show
that 2|E(gan he)| + |Vi(ga) N Vi(he)| > 4 for each pair g, h.

First suppose that g = h. Then

e gay = hay,

® gas,—1 = gaiz = hcyz = hegy-1,
® ga, = hc,,

® gani1 = ganz = hcpz = hepi1.

This gives 2|E(gan hc)| + [Vi(ga) N Vi(he)| > 2+ 2 = 4.

Now suppose that g # h. As a and c are orthogonal, for each f € G there are i
and j such that {a;,a;41} = {fc;, fejs1} forsome 1 <i<2n—1and1 < j < n.
Set f = g~*h. We cannot have i = n. If we did then a;'a;y; = 2 (as a is symmetric)
and so (f¢j) ' feji1 = z and so j must be n. But a, = ¢, and so f = e and hence
g = h. For similar reasons we cannot have j = n either.

So we have {a;, a; 11} = {97 he;, g hejpa} and hence {ga;, gaiy1} = {hej, heja}
for some 1 < i < 2n—1, withi #n,and 1 < j <n-—1. Seti = 2n— i and
j'=2n—j. Then

{gas, gav 1} = {gaiz,gain12}
{hcjz, hejiqaz}
{hejr, hejria}-

So 2|E(ganhe)| + |Vi(ga) N Vi(he)| > 440 =4.
The Hamiltonian path decompostions given by a and c are orthogonal and hence
the symmmetric Hamiltonian double Latin squares A and C' are orthogonal. 0O
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The two orthogonal SHLS(6)s in Figure 2 are based on Zg using the pair of
orthogonal symmetric directed terraces in Example 3.1.

Let G be a binary group. The study of terraces for G/A(G) has often led to fruitful
results concerning symmetric directed terraces for G, see, for example, [4, 5, 8, 17].
In our case, it also seems that there is something to be gained from the study of
terraces.

Let H be a group of order n, and let a and ¢ be the basic terraces (a1, az, ..., ax)
and (c1,¢2,. .., Cy) respectively, with a, = ¢,. For a fixed value of i satisfying 1 <
1 < n — 1, consider the equation

{ai, 041} = {hcj, hejia ),

where 1 < j <n—1and h € H. For the equation to hold we must have ai_laiH =
(¢;'cj41)* . If a; 'az4q is an involution, then there is one value of j for which this
holds and there are two possible values for A which give solutions to the equation. If
a; 'a; ;1 has order greater than 2, then there are two values of j for which this holds
and there is one value of h corresponding to each of these values of j which gives a
solution to the equation. So {a;,a;y1} = {hc;, hcj11} has two solutions for any fixed
i. Let S; be the pair of solutions {(Ji,, ki, ), (Ji,, hiy) } for a fixed . If it is possible to
choose a sequence
(jlv hl)v (j27 h2)7 R (jn—lv hn—l)v

where (j;, h;) € S; for each 7 and 1 <17 <mn — 1, with the additional properties that
{1,792,y n—1} = {1,2,...,n — 1} and {hq,ha, ..., hy_1} = H \ {e} then we say
that a and c are crossing.

Example 3.2 Let a be the LWW terrace (0,1,6,2,5,3,4) for Z; and let ¢ be the
terrace (0,5,1,2,3,6,4). Then a and c are crossing; we can choose the sequence

(4,5),(1,1),(5,3),(2,4),(6,6),(3,2).

Theorem 3.3 Let G be a binary group with orthogonal symmetric basic directed
terraces a and ¢ whose half-projections onto G/A(G) are @ and €. Then & and € are
CTossing.

Proof: Let G have order 2n and involution z, let a = (a1, ag,...,a9,) and ¢ =
(c1,¢2,...,Co), and let & = (a4, as,...,a,) and € = (¢1,Ca,...,C,). As a and ¢ are
orthogonal we have that a, = ¢, and hence a, = ¢,.

Set G to be as in Theorem 3.2. As a and ¢ are orthogonal we have that for
each g € G there is a pair (1,7) with 1 < i <2n—1and 1 < j < n such that
{ai,aip1} = {g¢j, gcj}-

As we observed immediately after the definition of orthogonality for symmetric
directed terrraces, if we choose a value of i there is only one possibility for the value
of j; call this value j;. Different values of 7 in the range 1 < i < n give different
values of j; and if ¢ > n then j; = jon_i, so {j1,72,---,0n} = {1,2,...,n}. Also,
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Jn = m, as the involution must occur at position n in the symmetric sequencings
associated with a and c, and so {j1, j2, ..., Jn1} = {1,2,...,n = 1}.

Suppose that two distinct elements g, h € G both use the same value of 7. Then
{9¢;j;. gcj;+1} and {hcj;, hej, 11} both occur as adjacent elements in the first half of a,
contradicting the fact that a is a symmetric directed terrace.

For each i, let g; be the element of G which uses the value i. Let h; be the
projection of g; onto G/A(G). If h; = hy for any pair 7,7’ then we must have g; = gir
as G contains just one of g and gz for each ¢ € G. Hence |{hq, hs,...,hp}| = n.
Moreover, g, = € as a, = ¢y, 80 h, = € and {hq,ha, ..., ho 1} = H\ {e}.

To show that a and € are crossing it only remains to show that, for each i,
we have {@;,d;41} = {hi€j;,hiCj+1}. This follows immediately as {a;,a;11} =
{gi¢jis gicjipa}. O

Theorem 3.3 gives a necessary condition that a pair of terraces must satisty if it
is possible to lift them to a pair of orthogonal symmetric directed terraces. As each
terrace may be lifted to a large number of different symmetric directed terraces this
helps considerably in our search.

Example 3.3 Let p = 2m + 1 be a prime congruent to 3 modulo 4. Williams [18]
shows that
(1,2,...,mymym—1,...,1)

is a 2-sequencing for Z,. The associated basic terrace is
m(m+1) m(m+1)

2 ' 2
This is a triangular numbers terrace, of which there are m for each prime p. The
general family appeared in [4] and was named in [17].

(0,1,3,... +m,...,m(m+1)).

If we apply the automorphism of multiplying by —2 modulo p then we get the 2-

sequencing (2m—1,2m—3,...,1,1,3,...,2m—1) which has associated basic terrace
1 1
(0,2m71,2m—5,...w,(m27+)+1,...,(m+1)).

The LWW terrace and this terrace are crossing.

Theorem 3.4 If p is be a prime congruent to 3 modulo 4 then there is a pair of
orthogonal symmetric directed terraces for Zsp.

Proof: Let p = 2m + 1 and take a to be the LWW directed terrace for Z,,. Let c
be the lift of the last terrace in Example 3.3 obtained by choosing the symmetric
sequencing

(4m,d4m —2,...,2m+2,1,3,... 4m+1,2m,2m —2,...,2).

Asp=3 (mod 4), we have that —1 is non-square and that each element of Z,,
is of the form 0, p, k* or —k? for some 1 < k < 2m. For each element g of Zy, we
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need a pair (4, 7) as described in the definition of orthogonality. Calculations reveal
that

(p,p) ifg=0org=p

(2k, k) ifg=k*and 1<k <m
(i,7) =< (2k,p—k) ifg=kandm+1<k<2m

(p+ (=12, p—k) ifg=—-k?>and 1 <k <m

(p— (—1)*+92k, k) ifg=—-kandm+1<k<2m

where 6 =0 if p=3 (mod 8) and J = 1 otherwise. O

Example 3.4 Theorem 3.4 gives the following pair of orthogonal symmetric directed
terraces for Zyy:

a = (0,1,13,2,12,3,11,4,10,5,9,6,8,7)
(0,12,8,2,3,6,11,4,13,10,9,1,5,7)

The (i,7) pairs are
(7,7),(2,1),(8,3),(11,5), (4,2), (13,4), (5, 6),
(7,7),(12,1),(6,3), (3,5), (10,2), (1,4), (9, 6)

for g =0,1,2,...,13 respectively. These symmetric directed terraces are equivalent
to the 14-processions of [13].

Corollary 3.1 There is a pair of mutually orthogonal SHLS(2p)s for all primes p
congruent to 3 modulo 4.

Proof: Apply Theorems 3.4 and 3.2. O

An inflation theorem for symmetric Hamiltonian double Latin squares is known:

Theorem 3.5 [13] The existence of a pair of mutually orthogonal SHLS(2n)s implies
the existence of a pair of mutually orthogonal SHLS(4n)s. O

In [2, 16] heuristic algorithms for finding terraces are described. Programs using
ideas from these algorithms (written in GAP v4.2 [10]) have been used to find pairs
of crossing terraces and to test whether they can be lifted to pairs of orthogonal sym-
metric directed terraces. Collecting together the theoretical results and the output
of these programs, we have:

Theorem 3.6 Let k be a positive integer. There is a pair of SHLS(28n)s whenever
n s a prime congrent to 3 modulo 4 or n € {1,5,9,13,15,17}.
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Proof: The primes congruent to 3 modulo 4 are covered by Corollary 3.1 and Theo-
rem 3.5. The cases n € {1,5,9,13} are covered in [13]. We give pairs of orthogonal
symmetric directed terraces for Zsy and Zs4; applying Theorem 3.5 completes the
proof. For brevity, we give just the first half of the symmetric directed terraces (that
is, the “n-procession” in the terminology of [13]).

Zso : 0,16,29,17,28, 18,27, 19, 26, 20, 25, 21, 24, 22, 23
0,21,18,1,5,28,9,4,14,12,11,17,25,7,23

Zas: 0,1,33,2,32,3,31,4.30,5,29,6,28,7,27, 8, 26
0,10,31,33,4,18, 15,23, 30, 12,8, 7, 19, 28,22, 3, 26

3

In both cases the first of the symmetric directed terraces is a lift of the LWW terrace
for the cyclic group of half the order. O

The programs turned up two further items of note. Firstly, they found a pair of
orthogonal symmetric directed terraces for Zz x Zg, a non-cyclic group. Secondly,
they found three mutually orthogonal symmetric directed terraces for Z;s, allowing
us to construct a set of three mutually orthogonal SHLS(18)s. As in the proof of
Theorem 3.6, we give the first half of the symmetric directed terraces.

Z3 XZS: ( ) ):( 73)7( 74):(275) (175)7(071)7(075)7(273)7(174)
(0,0),(1,2),(0,2),(1,3),(2,1),(2,0),(2,2), (0, 1), (1,4)
Zis . 0,2,6,1,4,3,14,8,16
0,6, 14,1,8 12,11,13,16
0.12,1,17,13,5,2. 15,16
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