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Abstract

Let T be a strongly connected tournament, and let p > 1 be an integer.
We show that if degj.(z) > p and degy (z) > p for all z € V(T), then
T has at least k¥ = min{|V(T)|,4p — 2} vertices z1, ®a, ..., T} such
that T — x; (¢ = 1,2,...,k) is strongly connected. We also show that if
p>2,|V(T)| > 4p, and degs(z) > p and degy(z) > p for all z € V(T),
then T has at least 4p — 1 vertices 1, T2, ..., T4p_1 such that T — z;
(:1=1,2,...,4p—1) is strongly connected. Further we show that if p > 2,
[V(T)| > 4p+1, and degj(z) > p and deg.(z) > p for all z € V(T'), then
T has at least 4p vertices &1, T2, ..., T4y such that T—z; (1 = 1,2,...,4p)
is strongly connected unless p = 2 and |V (T')| = 4p + 1.

1 Introduction

In this paper, we consider only simple digraphs, that is finite directed graphs without
loops or multiple edges. Let T = (V(T),E(T)) be a tournament, i.e., a simple
digraph such that for any z,y € V(T') with z # y, precisely one of zy and yx belongs
to E(T). For a subset X of V(T), we let (X)=(X)r denote the tournament induced
by X. For v € V(T), we let T' — v denote the tournament from 7" by deleting v; thus
T —v = (V(T)—{v}). For disjoint subsets A and B of V(T'), we let E(A, B) denote
the set of edges joining A to B and let e(A, B) denote the cardinality of E(A, B).
For v € V(T), we let degh(v) = e({v}, T — {v}) and degr(v) = e(T — {v}, {v}). Let
C be a cycle of T. For v € V(C), we denote by v~ and v" the predecessor and the
successor of v on C, respectively, and we denote by v*Cwv the directed path from v
tovon C.

If T is a tournament such that any two vertices in V(7") are connected by a
directed path, then we say T is strongly connected.

The following theorem by J. W. Moon [2] is well-known.



28 KEIKO KOTANI

Theorem A. Each vertex of a strongly connected tournament T is contained in a
cycle of length k, for k= 3,4,...,|V(T)|.

By Theorem A, the following theorem is obtained immediately.

Theorem B (Lovéasz [1]). Let T be a strongly connected tournament with |V (T)|
> 4. Then T has two vertices T1, To such that T —x; (i = 1,2) is strongly connected.

In addition, C. Thomassen [3] proved the following theorem:

Theorem C. Let T be a strongly connected tournament. Set n = |V(T)|. Then T
has three vertices x1, T2, T3 such that T —x; (i = 1,2,3) is strongly connected, unless
T is isomorphic to Q,, where Q, is the tournament consisting of a path vivs ...V,
and all edges v;v; such thati > j+ 1.

In this paper, we prove the following variants on Theorems B and C with large
minimum degree:

Theorem 1. Let p > 2 be an integer and set k = min{|V (T)|,4p — 2}. Let T be a
strongly connected tournament. Suppose that degh(x) > p and degy(x) > p for all
x € V(T). Then T has k vertices ©1, Ta, ..., T such that T —z; (i =1,2,...,k) is
strongly connected.

Theorem 2. Let p > 2 be an integer and set k = 4p—1. Let T be a strongly connected
tournament with |V (T)| > 4p. Suppose that degt(x) > p and degy(z) > p for all
z € V(T). Then T has k vertices ©1, s, ..., x such that T —z; (i =1,2,...,k) is
strongly connected.

Theorem 3. Let p > 2 be an integer and set k = 4p. Let T be a strongly connected
tournament with |V (T)| > 4p+ 1. Suppose that degt(z) > p and degr(z) > p for all
x € V(T). In the case where p = 2, suppose further that |V (T)| > 4p+2. Then T
has k vertices x1, T2, ..., T such that T —xz; (i =1,2,...,k) is strongly connected.

By Theorems B and 1, we obtain the following corollary:

Corollary 4. Let p > 1 be an integer and set k = min{|V(T)|,4p — 2}. Let T be
a strongly connected tournament with |V (T)| > 4. Suppose that degs(z) > p and
degr(z) > p for allw € V(T). Then T has k vertices x1, T, ..., xy such that T —x;
(i=1,2,...,k) is strongly connected.

Theorems 1, 2 and 3 can be proved by Theorems 5, 6 and 7, respectively.

Theorem 5. Let p > 2 be an integer. Let T be a strongly connected tournament.
Suppose that degh(z) > p and degp(z) > p for all z € V(T). Then for every
X C V(T) such that | X| < min{|V(T)| —1,4p — 3}, there exists a cycle C such that
X cV(C) and |V (C)| = |V(T)| - 1.

Theorem 6. Let p > 2 be an integer. Let T be a strongly connected tournament
with |V (T)| > 4p. Suppose that degt(z) > p and degp(z) > p for all x € V(T).
Then for every X C V(T) such that | X| < 4p — 2, there exists a cycle C such that
X cV(C) and |V(C)| =|V(T)| - 1.
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Theorem 7. Let p > 2 be an integer. Let T be a strongly connected tournament
with |V (T)| > 4p + 1. Suppose that degt(z) > p and degr(z) > p for all z € V(T).
In the case where p = 2, suppose further that |V (T)| > 4p 4+ 2. Then for every
X C V(T) such that | X| < 4p — 1, there exists a cycle C' such that X C V(C) and
V(€)= V(T)| - 1.

In Section 2, we prove several preliminary results, and we prove Theorems 1, 2
and 3 by Theorems 5, 6 and 7, respectively. We prove Theorems 5, 6 and 7 in Section
3. In Section 4, we discuss the sharpness of the various conditions in theorems.

2 Preliminaries

First we prove the following lemma:

Lemma 1. Let T be a strongly connected tournament, and let q be an integer such
that 1 < g < |V(T)| — 1. Suppose that for every X C V(T') such that | X| < q, there
exists a cycle C such that X C V(C) and |V(C)| = |V(T)| — 1. Then T has ¢+ 1
vertices Ty, T, ..., Tgp1 such that T —x; (1 =1,2,...,q+ 1) is strongly connected.

Proof. We set Xy = {z € V(T)|T — x is strongly connected}. By way of contradic-
tion, we assume that | Xo| < ¢. By the assumption of this lemma, there exists a cycle
C such that X, C V(C) and |V(C)| = |V(T)| — 1. Write V(T) — V(C) = {v}, then
v ¢ Xo. On the other hand, since C is a cycle such that V(C) =V (T —v), T —v is
strongly connected, thus v € Xy. Thus we obtain a contradiction. |

By Lemma 1, Theorems 5, 6 and 7 imply Theorems 1, 2 and 3, respectively. We
use the following two lemmas in the proof of Theorems 5, 6 and 7.

Lemma 2. Let p > 1 be an integer, and let T be a tournament. Suppose that
degh(z) > p for all z € V(T), or degr(z) > p for all x € V(T). Then |V(T)| >
2p + 1.

Proof. We set n = |V(T)|. By symmetry, we may assume that deg}(z) > p for
all z € V(T). Then 3,y (p degr(2) > np. On the other hand, 3,y ) degr(z) =

2=l Therefore we obtain “%=1 > np, and hence n > 2p + 1. H

Lemma 3. Let p > 1 be an integer, and let T be a tournament. Suppose that
degt(x) > p for allz € V(T) and there exists a vertezx € V(T) such that deg(z) >
p+1, ordegp(z) > p for all z € V(T) and there exists a vertex x € V(T) such that
degp(z) > p+1. Then |V(T)| > 2p + 2.

Proof. We set n = |V(T)|. By symmetry, we may assume that deg}(z) > p for
all z € V(T) and there exists a vertex 2 € V(T) such that degf(z) > p+ 1. Then
2 zev(r) degt(z) > np+1. On the other hand, D zev(r) degh(z) = @ Therefore
we 0btainn22p+1+%, and hence n > 2p + 2. a
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3 Proof of Theorems

Let p > 2 be an integer. Let T be a strongly connected tournament such that
degt(z) > p and degy(z) > p for all z € V(T). Let X be a subset of V(T') such
that | X| < min{|V(T)| — 1,4p — 1}. Let C be a cycle or a vertex of T such that
V(T) —V(C) — X # 0. We assume that we have chosen C so that [V(C) N X| is
maximal, and so that |V(C)| is maximal under the condition that |V(C) N X]| is
maximal. Note that V(C) N X # 0. We set

X" ={ve X -V(O)E{v},V(C)) = 0}
X~ ={ve X -V(O)EV(C),{v}) = 0}
Yt ={veV(T)-X-V(C)|E({v},V(C)) =0};and
Y ={veV(T)-X-V(O)EWV(C),{v}) =0}.
Under this notation, we prove the following claims.
Claim 1. X - V(C)=XtTUuX~.

Proof. Assume that there exists a vertex v € X —V/(C) such that E({v}, V(C)) # 0
and E(V(C),{v}) # 0. Then there exist consecutive vertices v; and v, on C' such
that viv € E(T) and vv, € E(T). Hence there exists a cycle C' = vvv,Cv; such
that V(T) — V(C') — X # 0, which contradicts the maximality of [V(C)NX|. O

Claim 2. E(X*, X7) =0.

Proof. Assume that E(X*,X~) # 0. Let v € X and v € X~ be vertices
such that wv € E(XT,X7). Let v; and vy be consecutive vertices on C, then
vy € E(T) and vvy € E(T'). Hence there exists a cycle C' = vjuvv,Cv; such that
V(T) - V(C") — X # 0, which contradicts the maximality of |V (C) N X]|. O

Claim 3. |V(T) — V(C) — X| < 2. Suppose that |V(T) — V(C) — X| = 2, then
Y* =Y =1

Proof. First show that if |V(T)-V(C)—X| > 2, then V(T)-V(C)-X =Y TUY .
Assume that V(T)—=V(C)—X =Y UY ™ #0. Letv e V(T)-V(C)— X -YTUY .
Then there exist consecutive vertices v; and v, on C such that v,v € E(T) and vv, €
E(T). Hence there exists a cycle C' = v1vv,Cv; such that V(T) — V(C') — X # 0,
which contradicts the maximality of [V (C')|. Here we obtain if |V(T)-V (C)—X| > 2,
then V(T) — V(C)— X =Y+ UY~.

Now we prove Claim 3. Assume that [Y*| > 2or |V | > 2, ie., [V(T)-V(C)—
X|>2. Then V(T) —V(C) — X =Yt UY . This together with Claim 1 implies
V(T)-V(C)=XT"UX"UYTUY". Since T is strongly connected, X+ UY ™ #£ (),
X-UY™ #0,and E(XTUY T, X"UY ") #£ 0. Letu € XTUY T andv € X~UY ™ be
vertices such that uv € E(XTUY ™+, X~ UY ™). Let v; and v, be consecutive vertices
on C, then vyu € E(T) and vvs € E(T). Hence there exists a cycle C' = vuvvsCuy
such that V(T) — V(C') — X # 0, which contradicts the maximality of |V (C)|.
Here we obtain |[Y*| < 1 and |[Y 7| < 1. Thus |V(T) — V(C) — X| < 2, and if
[V(T)—V(C)—X|=2,then Y| =Y |=1. O
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Claim 4. Suppose that |V(T) — V(C) — X| = 2. Then E(XT,Y") = 0 and
EY*T, X )=0.

Proof. Assume that E(XT,Y ") # 0 or E(Y*,X") # 0. By symmetry, we may
assume that E(XT,Y ") # (. By Claim 3, we can write Y~ = {v}. Let v € X such
that uv € E(T'). Let v; and vy be consecutive vertices on C, then v;u € E(T') and
vvg € E(T). Then there exists a cycle C' = vjuvv,Cvy such that V(T) -V (C') - X #
0, which contradicts the maximality of [V (C) N X]|. O

Claim 5. (i) If XT #£0, then |[XT|>2p—1. If X~ # 0, then | X~| > 2p— 1.

(ii) If there exists a vertezx x € X T such that E({z},V(T) — V(C) — X) = 0, then
|X*| > 2p. If there exists a vertex v € X~ such that E(V(T) — V(C) —
X, {z}) =0, then | X | > 2p.

Proof. (i) Let # € X*. By Claims 1 through 4 and the definition of X,
e({z}, V(T) = X*) = e({z},Y") < 1, and hence deg/y,(z) > p — 1. By apply-
ing Lemma 2 to the tournament (X '), we obtain |X*| > 2p — 1. Similarly, if
X~ 40, then | X~| > 2p— 1.

(i) Let x € Xt such that E({z},V(T) — V(C) — X) = 0. Then by Claims 1 and
2 and the definition of X, e({z}, V(T) — X*) = 0, and hence degy.(z) > p. By
applying Lemma 3 to the tournament (X*), we obtain | X*| > 2p. Similarly, if there
exists a vertex z € X~ such that E(V(T)—V(C)—X,{z}) = 0, then | X~| > 2p. O

Claim 6. |V(T) - V(C) — X| = 1.

Proof. Assume that |V(T) — V(C) — X| > 2. By Claim 3, |[V(T) - V(C) - X| =2
and Y| = |Y~| = 1. Write Y = {y;}. By Claims 1 through 4, E({1},V(T)) C
E({y:}, X*UY"). On the other hand, |[Y~| = 1 and deg}(y1) > p > 2, and hence
E({y},X") #0. Let z; € X be a vertex such that y;2; € E(T). Then by Claims

1 through 4 and the definition of X+, E({z:},V(T) — V(C) — X) = 0, and hence
|X*| > 2p by Claim 5(ii). Similarly, |X | > 2p. Consequently we obtain

| X| > |V(IC)NX|+ | XT|+|X7|
>14+2p+2p
=4dp+1,

which contradicts |X| < min{|V(T")| — 1,4p — 1}. O

Claim 7. If X C V(C), then |V(C)| = |V(T)| — 1.

Proof. By Claim 6, we obtain this claim immediately. O

Until the end of Claim 9, we assume that X — V(C) # 0. By Claim 1, X =
X* U X, and hence we may assume that X+ # () by symmetry. By Claim 6,
V(T) - V(C) — X consists of a single vertex, say o.

Claim 8. Suppose that X~ = (. Then the following hold.
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i) There exists a path P = z122- - Xx+|Yo (21, 22,...,2x+ € XT), e, V(P) =
[ X+ | X+
{yo} UXT and P has yo as the endvertez.

(ii) Suppose that |V (C) — X| > 2, or |[V(C) — X| =1 and e({yo},V(C)N X) > L.
Then |[V(C)NX| > | XH|.

(iii) Suppose that |V (C)—X| =1 ande({yo},V(C)NX) =0. Then |V (C)NX]| > 2p.
(iv) V(C)nX|>2p—1.
(v) IFIV(T) = X| 2 2, then E({yo}, X*) = 0.

Proof. Note that since X~ = (), and since T is strongly connected, E({yo}, V(C)) #
0.

(i) Let P be a path such that V(P)N X+ # () and P has y, as the endvertex (there
exists such a path P since E(X*,{yo}) # 0). We assume that we have chosen P
so that |[V(P) N X | is maximal. In order to show X+ C V(P), we assume that
Xt —V(P) # 0. For each vertex z € X+ — V(P), E({z},V(P)) = 0 by the
maximality of |[V(P)NX*|. Then E(Xt —V(P),V(T)— (Xt =V (P))) =0, which
contradicts the assumption that T  is strongly connected. Hence X — V(P) = 0,
thus X+ C V(P).

(ii) By the assumption of (ii), there exists v € V(C) such that yov € E(G) and
V(C) — X — {v} # 0, say vo. By (i), there exists a path P = z125- - Zx+ %0
(21, Z2,...,2x+| € XT). Hence there exists a cycle C' = Pvoz; such that V(T') —
V(C")— X # 0. By the maximality of |[V(C)NX|, [V(C)NX| > |[V(C")NX| = |XT].

(iii) Let vg € V(C) be a vertex such that yyvy € E(T). By the assumption of (iii),
vy ¢ X. Since degyp(vg) > p 2 2, E(V(C) — {wo}, {vo}) = E(V(C) N X,{w}) #
0. Let v, € V(C) N X such that viuy € E(T). Then deg(o)nxy(v1) > p, and
degy(oynxy(v) = p—1forall v € V(C) N X — {v1}. By applying Lemma 3 to the
tournament (V(C) N X}, we obtain |V (C) N X| > 2p.

(iv) If |V(C) — X| # 0, then |[V(C)NX| > 2p—1 by (ii) and Claim 5(i), and (iii). If
[V(C)—X| =0, then deg i, () = p—1forallz € V(C)NX = V(C). By applying
Lemma 2 to the tournament (V' (C)), we obtain |[V(C)| = |V(C)NX| > 2p—1.

(v) We assume that E({yo}, X ") # 0. Let 2o € Xt be a vertex such that yoz, €
E(T), then E({z¢},V(T) — V(C) — X) = 0, and hence |X*| > 2p by Claim 5(ii).
Since V(C) — X # 0 by the assumption of (v), (ii) or (iii) holds. Hence |X| =
[V(C)N X|+ |X*| > 4p, which contradicts | X| < min{4dp — 1,|V(T)| — 1}. O

Claim 9. Suppose that |V (T) — X| > 2. Then |V(C) — X| > 1, |V(C)| > 3, and
X~ =0.

Proof. By Claim 6, we have |V(C) — X| > 1. This together with |[V(C)NX]| > 1
implies |V(C)| > 3. Let vy € V(C) — X. Assume that X~ # 0. Since T is strongly
connected, E(X*,{yo}) # 0 and E({yo}, X ) # 0 by Claim 2. Let z; € X such
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that z1y0 € E(T), and let x5 € X~ such that yozys € E(T). Hence there exists a
cycle C' = vy z1yoTavg Cvy such that V(T) — V(C') — X # 0, which contradicts the
maximality of [V(C) N X]|. O

Proof of Theorem 5.

Let p and T be as in Theorem 5. Let X be a subset of V(7T') such that | X| <
min{|V(T)| — 1,4p — 3}, and C, X+, X~ be as in the paragraph preceding the
statement of Claim 1. In order to obtain X C V(C), we assume that X — V(C) # 0.
By Claim 1, we may assume X' # ) by symmetry. By Claim 5 (i), |[X*| > 2p — 1.
In the case where X~ # 0, |X | > 2p—1 by Claim 5 (i). Hence |[X| = |XNV(C)|+
[ Xt +|X | >1+2p—1+2p—1=4p — 1, which contradicts the definition of
X. In the case where X~ =0, |X| =|X NV(C)|+|XT| > 4p — 2 by Claim 8 (iv),
which also contradicts the definition of X. Here we obtain X C V(C), and hence
|[V(C)| = |V(T)| — 1 by Claim 7. This completes the proof of Theorem 5. O

Proof of Theorem 6.

Let p and T be as in Theorem 6. Let X be a subset of V(T') such that | X| <
4p — 2, and C, X, X~ be as in the paragraph preceding the statement of Claim
1. In order to obtain X C V(C), we assume that X — V(C) # 0. By Claim 1, we
may assume that X # () by symmetry. By Claim 6, |[V(T) — V(C) — X| = 1. Let
Yo be as in the paragraph preceding the statement of Claim 8. Since |V (T)| > 4p,
[V(T) — X| > 2, and hence X~ = 0 and [V(C)| > 3 by Claim 9. We write the
cycle C' = v1vy...ywi(l > 3). By Claim 8(v), there exist two vertices v;, v; € V(C)
(1 <i < j <) such that yov;, yov; € E(T). By Claim 9, |V(C) — X| > 1. This
together with |V (C) N X| > 1 implies that one of the following holds (subscripts of
the letter v are to be read modulo [):

(1) Hvis-.,v1 3N X| > 1and [{vj,..., 043N (V(T) - X)| > 1; 0r
(2) Hvjy-. v 3N X| > 1and [{vg,...,0;-1 3N (V(T) — X)| > 1.

By symmetry, we may assume that (1) holds. By Claim 8 (i), there exists a path P =
Ty Ty x+|Yo (L1, T2, . .., Tx+| € X T). Hence there exists a cycle C" = Pv;Cv;_y1;
such that V(T)—V(C')— X # @ and [V(C')NX| > |Xt|+1. By Claim 5(i), | X | >
2p—1. By the maximality of [V(C)NX|, [V(C)NX| > [V(C)NX| > | XH|+1 > 2p.
Consequently, | X| = |[V(C) N X|+ |X*| > 4p — 1, which contradicts the definition
of X. Here we obtain X C V(C), and hence |V(C)| = |V(T)| — 1 by Claim 7. This
completes the proof of Theorem 6. O

Proof of Theorem 7.

Let p and T be as in Theorem 7. Let X be a subset of V(T') such that | X| <
4p — 1, and C, X, X~ be as in the paragraph preceding the statement of Claim
1. In order to obtain X C V(C), we assume that X — V(C) # 0. By Claim 1,
we may assume that X+ # 0 by symmetry. By Claim 5(i), |[X*| > 2p — 1. By
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Claim 6, |V(T) — V(C) — X| = 1. Let yo be as in the paragraph preceding the
statement of Claim 8. Since |V(T)| > 4p+ 1, |V(T) — X| > 2, and hence X~ =0
and |V(C)| > 3 by Claim 9. We write the cycle C' = v1v,...vv; (I > 3). By Claim
8(iv), [V(C)NX| > 2p—1 > 3. By Claim 9, |[V(C) — X| > 1. Now we divide into
the following two cases.

Case 1. p > 3.

By Claim 8(v), there exist three vertices v;,, v, vi; € V(C) (1 < iy < < i3 <
1) such that yov;;, € E(T) (j = 1,2,3). Since |[V(C)N X| > 3 and [V(C) - X| > 1,
one of the following holds (subscripts of the letter v are to be read modulo [):

(1) {viy,--yvis—1 N X[ > 2 and [{viy, ..., 0,1} N (V(T) — X)| > 1; or
(2) |{vi2a' e avi171} |’_W*X| > 2 and ‘{viun '7“1'271} n (V(T) - X)| > ]-; or
(3) {vigy .-+, vi, 1} NX| >2and [{vi,,..., 0,1} N (V(T) - X)| > 1.

By arguing as in the proof of Theorem 6, there exists a cycle C' such that V(T) —
V(C")— X # 0 and |[V(C')NX]| > |XT|+ 2. Then [V(C)NX| > |V(C")NX| >
|X*T|+2>2p+1, and hence | X| = [V(C) N X| + | X t| > 4p, which contradicts the
definition of X.
Case 2. p=2.

By Claim 8(v), there exist two vertices v;, v; € V(C) (1 < ¢ < j <) such that
Yos, Yov; € E(T).

First we consider the case where j—¢ > 2 and i+1—j > 2. Since |V (C)NX| >3
and |[V(C) — X| > 1, one of the following holds (subscripts of the letter v are to be
read modulo 1):

(1) Hvis-.yv21 3N X| > 2 and [{vj,..., 043N (V(T) - X)| > 1; 0r
2) Hvjy-.sviadb N X| > 2 and [{vi,...,v;_1 3N (V(T) — X)| > 1.

By arguing as in the proof of Theorem 6, there exists a cycle C' such that V(T') —
V(C')— X #0 and [V(C')NX| > |XT|+ 2. Then |V(C)NX| > |V(C)NX]| >
|X*T|+2>2p+1, and hence | X| = [V(C) N X| + | X T| > 4p, which contradicts the
definition of X.

Now we consider the case where j —i = 1or i+ 11— j = 1. We may assume
that j —¢ = 1 by symmetry. Assume for the moment that there exists a path
@ such that the beginning of @ is v; or v;, V(Q) C V(C), |[V(Q) N X| > 2, and
V(C)-V(Q) — X # 0. By Claim 8 (i), there exists a path P = 125 Z|x+%0
(21,22, ..., 2x+| € XT). Hence there exists a cycle C' = PQz; such that V(T) —
V(C') =X # 0 and |[V(C') N X| > |X| + 2. Therefore |X| > 4p by arguing as in
the preceding paragraph, which contradicts the definition of X. Assume now that
V(C) —V(Q) — X =0 for any path @ such that

the beginning of @ is v; or v;, V(Q) C V(C), (%)
and [V(Q)NX| > 2.
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Let Qo = v;Cv;_; (throughout the end of this paragraph, subscripts of the letter v
are to be read modulo [). Since |X| < 4p—1and |V(T)| > 4p+2, |V(T) — X| > 3,
and hence |V(Qo) N (V(T) — X)| > 2. Since V(C) — V(Q) — X = 0 for any path
Q satisfying (x), there exists an integer m with ¢ + 2 < m < [ 4+ 7 — 2 such that

Viti(=j), " »Um € V(T) — X and vpy1,---,v; € X. Set Zy = {vj41, -+ , vy} and
Zy = {Ums1,* " »Vi—1}. Since ({vm} U Z2) N {v;,v;} = 0, E{yo}, {vm} U Z2) = 0.
Then
E(X" U{y} {vn}) =0, (1)
and
E(X*U{w}, Z2) = 0. (2)
Since V(C) — V(Q) — X = 0 for any path @ satisfying (*), we also obtain
E({vi, ., Vm-2,Ums1},{vm}) = 0, (3)
and
E({vi,. .., 0m-1},Z) = 0. (4)

By (1) and (3), e(Z2 — {vm+1},{vm}) > 1. Let wg € Zy — {vm+1} such that wov,, €
E(T). By (2) and (4), deg 4, (wo) > p and deg ,\(w) > p—1for all w € Z5 — {wp}.
By applying Lemma 3 to the tournament (Z,), |Z| > 2p. Therefore |X| = |Z5 U
{v;}| +|X*| > 4p, which contradicts the definition of X.

Consequently, we obtain X C V(C), and hence |V(C)| = |[V(T)| — 1 by Claim
7. This completes the proof of Theorem 7. a

4 Examples

In this section, we discuss the sharpness of the various conditions in theorems.

Proposition 1. Let p > 2 be an integer. There exists a strongly connected tourna-
ment T with |V (T)| = 4p—1 such that degs(z) > p and degy(z) > p for allz € V(T),
but T has no 4p — 1 vertices x1, T2, .., Tap—1 Such that T —x; (i =1,2,...,4p—1)
is strongly connected; that is, there exists a subset X of V(T) having 4p — 2 vertices
such that X — V(C) # 0 for every cycle C such that |V (C)| < |V(T)| — 1.

Proof. Let p > 2 be an integer. Let T} and T5 be tournaments having 2p—1 vertices
such that V(7,,) = {v{*,v5",...,v5,_,} and E(T,,) = {vj"o]* |1 <i <2p—1,i+1<
j<i+p-—1, jis to be read modulo 2p — 1} (m = 1,2). We define a tournament 7'
having 4p — 1 vertices by

V(T) =V(T1) UV(T2) U {wo},

E(T) =E(Ty) U E(T3)
U{vwy |v € V(To)} U {wov|v e V(T1)}
U{uv|u e V(T),veV(Ty)}
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Then T has the desired properties. To see this, set X = V(T1) U V(T3), then
X —V(C) # 0 for every cycle C such that |[V(C)| < |[V(T)| - 1. O

Proposition 2. Let p > 2 be an integer. There exists a strongly connected tourna-
ment T with |V (T)| = 4p such that degt(z) > p and degr(x) > p for all x € V(T),
but T has no 4p vertices &1, Ta, ..., Ty such that T —z; (i =1,2,...,4p) is strongly
connected; that is, there exists a subset X of V(T) having 4p — 1 vertices such that
X —V(C) #0 for every cycle C such that |V (C)| < |V(T)] — 1.

Proof. Let p > 2 be an integer. Let T} and T» be tournaments having 2p—1 vertices
such that V(7,,) = {v{*,v5",...,v5,_,} and E(T,,) = {vj"0]* |1 <i<2p—1,i+1<
j<i+p-—1, jis to be read modulo 2p — 1} (m = 1,2). We define a tournament 7'
by

V(T) =V (T1) UV(T2) U {wy, wa},

E(T)=E(T) U{vwy |veV(T1)} U{wyw |v e V(T1)}
UE(Ty) U {vws |v e V(T2)}U{wv |v e V(T3)}
U{w |u e V(T1),v e V(Tz)} U {wiws}.

Then T has the desired properties. To see this, set X = V(T1) UV (T2) U {w;}, then
X —V(C) # 0 for every cycle C such that |[V(C)| < |[V(T)| - 1. O

Propositions 1 and 2 imply that the cardinality of the set of nonseparating
vertices in Theorems 1 and 2 is sharp, and that the bound on the order T is best
possible in Theorems 2 and 3.

Proposition 3. Let p > 2 be an integer. There exist infinitely many strongly con-
nected tournaments T with |V (T)| > 4p + 1 such that degy(z) > p and degp(z) > p
for all x € V(T'), but T has no 4p + 1 vertices z1, T2, ..., Tapy1 such that T — xz;
(1t = 1,2,...,4p + 1) is strongly connected; that is, there exists a subset X of
V(T) having 4p vertices such that X — V(C) # 0 for every cycle C such that
V(O)] < [V(T)| — 1.

Proof. Let p > 2 be an integer, and [ > 1 be an integer. Let 77 and T be
tournaments having 2p vertices such that V(T,,) = {v*,v5",...,v5,} and E(Ty,) =
forvp |1 <i<pi+1 <j<i+ptU{fofol|p+1<i<2pitl <<
i+p—1, jis to be read modulo 2p}(m = 1,2), and let T3 be a tournament having
[ vertices v3,v3, ..., v} with E(T3) = E; U E,, where

s {{vsvfﬂusl'szl} (1>2)
o
0 =

2 R 3<i<l1<j<i-2} (1>3)
70 (1<2).
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We define a tournament 7" by

V(T) =V (T1) UV(T2) UV (T3),

E(T) =E(T1) U E(T3) U E(T3)
U{viv|v e {vf,...,0}}U{ve} |v e {vpy,...,v3}}
U{vjv|ve {vf,..., 023} U{vv} |ve{v,,...,v3}}

U{uv,vw | u € V(Tp),v € V(T3) — {v3,v}},w € V(T1)}
U{uv |u € V(Ty),v € V(T1)} U Es,

where
. {{U;v lve V(T)U{vod |veV(Ty)} (1>2
0 (l=1

Then T has the desired properties. To see this, set X = V(T7)UV (T3),
and X — V(C) # 0 for every cycle C such that |[V(C)| < |[V(T)| - 1.

then | X| = 4p,
g

Proposition 4. Let p = 2. There exists a strongly connected tournament T with
[V(T)| = 4p + 1 such that degs(z) > p and degr(z) > p for all z € V(T), but
T has no 4p vertices x1, T2, ..., Tap such that T —z; (i = 1,2,...,4p) is strongly
connected; that is, there exists a subset X of V(T) having 4p — 1 vertices such that
X —V(C) #0 for every cycle C such that |V (C)| < |V(T)] — 1.

Proof. We define a tournament 7" having 4p + 1 = 9 vertices vy, vg, ..., v9 by

E(T) = {v1v2, vav3, v301 } U {v7vs, gy, vov7 }
U{vsv;, vivg|7 < i < 9} U {vgus}
U{vsua]l <4< 3,7 <4 <9} U {vgvs, vav6}
Uf{wv; |5 <3<9,1<5<3}

Then T has the desired properties. To see this, set X = {v;|]1 <1 < 3,6 <14 <9},
then |[X| =4p—1 =7, and X — V(C) # 0 for every cycle C such that [V(C)| <
|V(T)| —1. O

Proposition 3 implies that the cardinality of the set of nonseparating vertices
in Theorems 3 is sharp. Proposition 4 shows that for p =2 and |V(T)| =4p — 1, a
result like Theorem 3 no longer holds.
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