Nonseparating vertices in tournaments with large minimum degree

Keiko Kotani

Department of Mathematics Science University of Tokyo Wakamiya 26, Shinjuku-ku Tokyo, 162-0827 Japan kkotani@rs.kagu.tus.ac.jp

8 3

Abstract

Let T be a strongly connected tournament, and let $p \geq 1$ be an integer. We show that if $\deg_T^+(x) \geq p$ and $\deg_T^-(x) \geq p$ for all $x \in V(T)$, then T has at least $k = \min\{|V(T)|, 4p-2\}$ vertices x_1, x_2, \ldots, x_k such that $T-x_i$ $(i=1,2,\ldots,k)$ is strongly connected. We also show that if $p \geq 2$, $|V(T)| \geq 4p$, and $\deg_T^+(x) \geq p$ and $\deg_T^-(x) \geq p$ for all $x \in V(T)$, then T has at least 4p-1 vertices $x_1, x_2, \ldots, x_{4p-1}$ such that $T-x_i$ $(i=1,2,\ldots,4p-1)$ is strongly connected. Further we show that if $p \geq 2$, $|V(T)| \geq 4p+1$, and $\deg_T^+(x) \geq p$ and $\deg_T^-(x) \geq p$ for all $x \in V(T)$, then T has at least p vertices p and p vertices p vertices p and p vertices p and p vertices p vertices p and p vertices p vertices p vertices p and p vertices p vertices

1 Introduction

In this paper, we consider only simple digraphs, that is finite directed graphs without loops or multiple edges. Let T=(V(T),E(T)) be a tournament, i.e., a simple digraph such that for any $x,y\in V(T)$ with $x\neq y$, precisely one of xy and yx belongs to E(T). For a subset X of V(T), we let $\langle X\rangle = \langle X\rangle_T$ denote the tournament induced by X. For $v\in V(T)$, we let T-v denote the tournament from T by deleting v; thus $T-v=\langle V(T)-\{v\}\rangle$. For disjoint subsets A and B of V(T), we let E(A,B) denote the set of edges joining A to B and let e(A,B) denote the cardinality of E(A,B). For $v\in V(T)$, we let $\deg_T^+(v)=e(\{v\},T-\{v\})$ and $\deg_T^-(v)=e(T-\{v\},\{v\})$. Let C be a cycle of T. For $v\in V(C)$, we denote by v^- and v^+ the predecessor and the successor of v on C, respectively, and we denote by v^+Cv the directed path from v^+ to v on C.

If T is a tournament such that any two vertices in V(T) are connected by a directed path, then we say T is strongly connected.

The following theorem by J. W. Moon [2] is well-known.

Theorem A. Each vertex of a strongly connected tournament T is contained in a cycle of length k, for $k = 3, 4, \ldots, |V(T)|$.

By Theorem A, the following theorem is obtained immediately.

Theorem B (Lovász [1]). Let T be a strongly connected tournament with $|V(T)| \ge 4$. Then T has two vertices x_1 , x_2 such that $T - x_i$ (i = 1, 2) is strongly connected.

In addition, C. Thomassen [3] proved the following theorem:

Theorem C. Let T be a strongly connected tournament. Set n = |V(T)|. Then T has three vertices x_1, x_2, x_3 such that $T - x_i$ (i = 1, 2, 3) is strongly connected, unless T is isomorphic to Q_n , where Q_n is the tournament consisting of a path $v_1v_2 \ldots v_n$ and all edges v_iv_j such that i > j + 1.

In this paper, we prove the following variants on Theorems B and C with large minimum degree:

Theorem 1. Let $p \geq 2$ be an integer and set $k = \min\{|V(T)|, 4p-2\}$. Let T be a strongly connected tournament. Suppose that $\deg_T^+(x) \geq p$ and $\deg_T^-(x) \geq p$ for all $x \in V(T)$. Then T has k vertices x_1, x_2, \ldots, x_k such that $T - x_i$ $(i = 1, 2, \ldots, k)$ is strongly connected.

Theorem 2. Let $p \geq 2$ be an integer and set k = 4p-1. Let T be a strongly connected tournament with $|V(T)| \geq 4p$. Suppose that $\deg_T^+(x) \geq p$ and $\deg_T^-(x) \geq p$ for all $x \in V(T)$. Then T has k vertices x_1, x_2, \ldots, x_k such that $T - x_i$ $(i = 1, 2, \ldots, k)$ is strongly connected.

Theorem 3. Let $p \geq 2$ be an integer and set k = 4p. Let T be a strongly connected tournament with $|V(T)| \geq 4p+1$. Suppose that $\deg_T^+(x) \geq p$ and $\deg_T^-(x) \geq p$ for all $x \in V(T)$. In the case where p = 2, suppose further that $|V(T)| \geq 4p+2$. Then T has k vertices x_1, x_2, \ldots, x_k such that $T - x_i$ $(i = 1, 2, \ldots, k)$ is strongly connected.

By Theorems B and 1, we obtain the following corollary:

Corollary 4. Let $p \ge 1$ be an integer and set $k = min\{|V(T)|, 4p-2\}$. Let T be a strongly connected tournament with $|V(T)| \ge 4$. Suppose that $\deg_T^+(x) \ge p$ and $\deg_T^-(x) \ge p$ for all $x \in V(T)$. Then T has k vertices x_1, x_2, \ldots, x_k such that $T - x_i$ $(i = 1, 2, \ldots, k)$ is strongly connected.

Theorems 1, 2 and 3 can be proved by Theorems 5, 6 and 7, respectively.

Theorem 5. Let $p \ge 2$ be an integer. Let T be a strongly connected tournament. Suppose that $\deg_T^+(x) \ge p$ and $\deg_T^-(x) \ge p$ for all $x \in V(T)$. Then for every $X \subset V(T)$ such that $|X| \le \min\{|V(T)| - 1, 4p - 3\}$, there exists a cycle C such that $X \subset V(C)$ and |V(C)| = |V(T)| - 1.

Theorem 6. Let $p \geq 2$ be an integer. Let T be a strongly connected tournament with $|V(T)| \geq 4p$. Suppose that $\deg_T^+(x) \geq p$ and $\deg_T^-(x) \geq p$ for all $x \in V(T)$. Then for every $X \subset V(T)$ such that $|X| \leq 4p-2$, there exists a cycle C such that $|X| \subset V(C)$ and |V(C)| = |V(T)| - 1.

Theorem 7. Let $p \geq 2$ be an integer. Let T be a strongly connected tournament with $|V(T)| \geq 4p+1$. Suppose that $\deg_T^+(x) \geq p$ and $\deg_T^-(x) \geq p$ for all $x \in V(T)$. In the case where p=2, suppose further that $|V(T)| \geq 4p+2$. Then for every $X \subset V(T)$ such that $|X| \leq 4p-1$, there exists a cycle C such that $X \subset V(C)$ and |V(C)| = |V(T)| - 1.

In Section 2, we prove several preliminary results, and we prove Theorems 1, 2 and 3 by Theorems 5, 6 and 7, respectively. We prove Theorems 5, 6 and 7 in Section 3. In Section 4, we discuss the sharpness of the various conditions in theorems.

2 Preliminaries

First we prove the following lemma:

Lemma 1. Let T be a strongly connected tournament, and let q be an integer such that $1 \le q \le |V(T)| - 1$. Suppose that for every $X \subset V(T)$ such that $|X| \le q$, there exists a cycle C such that $X \subset V(C)$ and |V(C)| = |V(T)| - 1. Then T has q + 1 vertices $x_1, x_2, \ldots, x_{q+1}$ such that $T - x_i$ $(i = 1, 2, \ldots, q+1)$ is strongly connected.

Proof. We set $X_0 = \{x \in V(T) | T - x \text{ is strongly connected} \}$. By way of contradiction, we assume that $|X_0| \leq q$. By the assumption of this lemma, there exists a cycle C such that $X_0 \subset V(C)$ and |V(C)| = |V(T)| - 1. Write $V(T) - V(C) = \{v\}$, then $v \notin X_0$. On the other hand, since C is a cycle such that V(C) = V(T - v), T - v is strongly connected, thus $v \in X_0$. Thus we obtain a contradiction.

By Lemma 1, Theorems 5, 6 and 7 imply Theorems 1, 2 and 3, respectively. We use the following two lemmas in the proof of Theorems 5, 6 and 7.

Lemma 2. Let $p \geq 1$ be an integer, and let T be a tournament. Suppose that $\deg_T^+(x) \geq p$ for all $x \in V(T)$, or $\deg_T^-(x) \geq p$ for all $x \in V(T)$. Then $|V(T)| \geq 2p+1$.

Proof. We set n=|V(T)|. By symmetry, we may assume that $\deg_T^+(x) \geq p$ for all $x \in V(T)$. Then $\sum_{x \in V(T)} \deg_T^+(x) \geq np$. On the other hand, $\sum_{x \in V(T)} \deg_T^+(x) = \frac{n(n-1)}{2}$. Therefore we obtain $\frac{n(n-1)}{2} \geq np$, and hence $n \geq 2p+1$.

Lemma 3. Let $p \geq 1$ be an integer, and let T be a tournament. Suppose that $\deg_T^+(x) \geq p$ for all $x \in V(T)$ and there exists a vertex $x \in V(T)$ such that $\deg_T^+(x) \geq p+1$, or $\deg_T^-(x) \geq p$ for all $x \in V(T)$ and there exists a vertex $x \in V(T)$ such that $\deg_T^-(x) \geq p+1$. Then $|V(T)| \geq 2p+2$.

Proof. We set n=|V(T)|. By symmetry, we may assume that $\deg_T^+(x) \geq p$ for all $x \in V(T)$ and there exists a vertex $x \in V(T)$ such that $\deg_T^+(x) \geq p+1$. Then $\sum_{x \in V(T)} \deg_T^+(x) \geq np+1$. On the other hand, $\sum_{x \in V(T)} \deg_T^+(x) = \frac{n(n-1)}{2}$. Therefore we obtain $n \geq 2p+1+\frac{2}{n}$, and hence $n \geq 2p+2$.

3 Proof of Theorems

Let $p \geq 2$ be an integer. Let T be a strongly connected tournament such that $\deg_T^+(x) \geq p$ and $\deg_T^-(x) \geq p$ for all $x \in V(T)$. Let X be a subset of V(T) such that $|X| \leq \min\{|V(T)| - 1, 4p - 1\}$. Let C be a cycle or a vertex of T such that $V(T) - V(C) - X \neq \emptyset$. We assume that we have chosen C so that $|V(C) \cap X|$ is maximal, and so that |V(C)| is maximal under the condition that |V(C)| is maximal. Note that |V(C)| = X = X. We set

$$X^{+} = \{v \in X - V(C) | E(\{v\}, V(C)) = \emptyset\};$$

$$X^{-} = \{v \in X - V(C) | E(V(C), \{v\}) = \emptyset\};$$

$$Y^{+} = \{v \in V(T) - X - V(C) | E(\{v\}, V(C)) = \emptyset\}; \text{ and }$$

$$Y^{-} = \{v \in V(T) - X - V(C) | E(V(C), \{v\}) = \emptyset\}.$$

Under this notation, we prove the following claims.

Claim 1.
$$X - V(C) = X^+ \cup X^-$$
.

Proof. Assume that there exists a vertex $v \in X - V(C)$ such that $E(\{v\}, V(C)) \neq \emptyset$ and $E(V(C), \{v\}) \neq \emptyset$. Then there exist consecutive vertices v_1 and v_2 on C such that $v_1v \in E(T)$ and $v_2v \in E(T)$. Hence there exists a cycle $C' = v_1vv_2Cv_1$ such that $V(T) - V(C') - X \neq \emptyset$, which contradicts the maximality of $|V(C) \cap X|$. \square

Claim 2.
$$E(X^+, X^-) = \emptyset$$
.

Proof. Assume that $E(X^+, X^-) \neq \emptyset$. Let $u \in X^+$ and $v \in X^-$ be vertices such that $uv \in E(X^+, X^-)$. Let v_1 and v_2 be consecutive vertices on C, then $v_1u \in E(T)$ and $vv_2 \in E(T)$. Hence there exists a cycle $C' = v_1uvv_2Cv_1$ such that $V(T) - V(C') - X \neq \emptyset$, which contradicts the maximality of $|V(C) \cap X|$.

Claim 3.
$$|V(T) - V(C) - X| \le 2$$
. Suppose that $|V(T) - V(C) - X| = 2$, then $|Y^+| = |Y^-| = 1$.

Proof. First show that if $|V(T)-V(C)-X| \geq 2$, then $V(T)-V(C)-X=Y^+\cup Y^-$. Assume that $V(T)-V(C)-X-Y^+\cup Y^-\neq\emptyset$. Let $v\in V(T)-V(C)-X-Y^+\cup Y^-$. Then there exist consecutive vertices v_1 and v_2 on C such that $v_1v\in E(T)$ and $v_2\in E(T)$. Hence there exists a cycle $C'=v_1vv_2Cv_1$ such that $V(T)-V(C')-X\neq\emptyset$, which contradicts the maximality of |V(C)|. Here we obtain if $|V(T)-V(C)-X|\geq 2$, then $V(T)-V(C)-X=Y^+\cup Y^-$.

Now we prove Claim 3. Assume that $|Y^+| \geq 2$ or $|Y^-| \geq 2$, i.e., $|V(T) - V(C) - X| \geq 2$. Then $V(T) - V(C) - X = Y^+ \cup Y^-$. This together with Claim 1 implies $V(T) - V(C) = X^+ \cup X^- \cup Y^+ \cup Y^-$. Since T is strongly connected, $X^+ \cup Y^+ \neq \emptyset$, $X^- \cup Y^- \neq \emptyset$, and $E(X^+ \cup Y^+, X^- \cup Y^-) \neq \emptyset$. Let $u \in X^+ \cup Y^+$ and $v \in X^- \cup Y^-$ be vertices such that $uv \in E(X^+ \cup Y^+, X^- \cup Y^-)$. Let v_1 and v_2 be consecutive vertices on C, then $v_1u \in E(T)$ and $vv_2 \in E(T)$. Hence there exists a cycle $C' = v_1uvv_2Cv_1$ such that $V(T) - V(C') - X \neq \emptyset$, which contradicts the maximality of |V(C)|. Here we obtain $|Y^+| \leq 1$ and $|Y^-| \leq 1$. Thus $|V(T) - V(C) - X| \leq 2$, and if |V(T) - V(C) - X| = 2, then $|Y^+| = |Y^-| = 1$.

П

Claim 4. Suppose that |V(T) - V(C) - X| = 2. Then $E(X^+, Y^-) = \emptyset$ and $E(Y^+, X^-) = \emptyset$.

Proof. Assume that $E(X^+,Y^-) \neq \emptyset$ or $E(Y^+,X^-) \neq \emptyset$. By symmetry, we may assume that $E(X^+,Y^-) \neq \emptyset$. By Claim 3, we can write $Y^- = \{v\}$. Let $u \in X^+$ such that $uv \in E(T)$. Let v_1 and v_2 be consecutive vertices on C, then $v_1u \in E(T)$ and $vv_2 \in E(T)$. Then there exists a cycle $C' = v_1uvv_2Cv_1$ such that $V(T) - V(C') - X \neq \emptyset$, which contradicts the maximality of $|V(C) \cap X|$.

Claim 5. (i) If $X^+ \neq \emptyset$, then $|X^+| \geq 2p - 1$. If $X^- \neq \emptyset$, then $|X^-| \geq 2p - 1$.

- (ii) If there exists a vertex $x \in X^+$ such that $E(\{x\}, V(T) V(C) X) = \emptyset$, then $|X^+| \geq 2p$. If there exists a vertex $x \in X^-$ such that $E(V(T) V(C) X, \{x\}) = \emptyset$, then $|X^-| \geq 2p$.
- **Proof.** (i) Let $x \in X^+$. By Claims 1 through 4 and the definition of X^+ , $e(\{x\}, V(T) X^+) = e(\{x\}, Y^+) \le 1$, and hence $\deg_{\langle X^+ \rangle}^+(x) \ge p-1$. By applying Lemma 2 to the tournament $\langle X^+ \rangle$, we obtain $|X^+| \ge 2p-1$. Similarly, if $X^- \ne \emptyset$, then $|X^-| \ge 2p-1$.
- (ii) Let $x \in X^+$ such that $E(\{x\}, V(T) V(C) X) = \emptyset$. Then by Claims 1 and 2 and the definition of X^+ , $e(\{x\}, V(T) X^+) = 0$, and hence $\deg_{\langle X^+ \rangle}^+(x) \geq p$. By applying Lemma 3 to the tournament $\langle X^+ \rangle$, we obtain $|X^+| \geq 2p$. Similarly, if there exists a vertex $x \in X^-$ such that $E(V(T) V(C) X, \{x\}) = \emptyset$, then $|X^-| \geq 2p$. \square

Claim 6. |V(T) - V(C) - X| = 1.

Proof. Assume that $|V(T)-V(C)-X|\geq 2$. By Claim 3, |V(T)-V(C)-X|=2 and $|Y^+|=|Y^-|=1$. Write $Y^+=\{y_1\}$. By Claims 1 through 4, $E(\{y_1\},V(T))\subset E(\{y_1\},X^+\cup Y^-)$. On the other hand, $|Y^-|=1$ and $\deg_T^+(y_1)\geq p\geq 2$, and hence $E(\{y_1\},X^+)\neq\emptyset$. Let $x_1\in X^+$ be a vertex such that $y_1x_1\in E(T)$. Then by Claims 1 through 4 and the definition of X^+ , $E(\{x_1\},V(T)-V(C)-X)=\emptyset$, and hence $|X^+|\geq 2p$ by Claim 5(ii). Similarly, $|X^-|\geq 2p$. Consequently we obtain

$$|X| \ge |V(C) \cap X| + |X^+| + |X^-|$$

 $\ge 1 + 2p + 2p$
 $= 4p + 1$.

which contradicts $|X| \le \min\{|V(T)| - 1, 4p - 1\}.$

Claim 7. If $X \subset V(C)$, then |V(C)| = |V(T)| - 1.

Proof. By Claim 6, we obtain this claim immediately.

Until the end of Claim 9, we assume that $X - V(C) \neq \emptyset$. By Claim 1, $X = X^+ \cup X^-$, and hence we may assume that $X^+ \neq \emptyset$ by symmetry. By Claim 6, V(T) - V(C) - X consists of a single vertex, say y_0 .

Claim 8. Suppose that $X^- = \emptyset$. Then the following hold.

- (i) There exists a path $P = x_1 x_2 \cdots x_{|X^+|} y_0 \ (x_1, x_2, \dots, x_{|X^+|} \in X^+)$, i.e., $V(P) = \{y_0\} \cup X^+$ and P has y_0 as the endvertex.
- (ii) Suppose that $|V(C) X| \ge 2$, or |V(C) X| = 1 and $e(\{y_0\}, V(C) \cap X) \ge 1$. Then $|V(C) \cap X| \ge |X^+|$.
- (iii) Suppose that |V(C)-X|=1 and $e(\{y_0\},V(C)\cap X)=0$. Then $|V(C)\cap X|\geq 2p$.
- (iv) $|V(C) \cap X| \ge 2p 1$.
- (v) If $|V(T) X| \ge 2$, then $E(\{y_0\}, X^+) = \emptyset$.

Proof. Note that since $X^- = \emptyset$, and since T is strongly connected, $E(\{y_0\}, V(C)) \neq \emptyset$.

- (i) Let P be a path such that $V(P) \cap X^+ \neq \emptyset$ and P has y_0 as the endvertex (there exists such a path P since $E(X^+, \{y_0\}) \neq \emptyset$). We assume that we have chosen P so that $|V(P) \cap X^+|$ is maximal. In order to show $X^+ \subset V(P)$, we assume that $X^+ V(P) \neq \emptyset$. For each vertex $x \in X^+ V(P)$, $E(\{x\}, V(P)) = \emptyset$ by the maximality of $|V(P) \cap X^+|$. Then $E(X^+ V(P), V(T) (X^+ V(P))) = \emptyset$, which contradicts the assumption that T is strongly connected. Hence $X^+ V(P) = \emptyset$, thus $X^+ \subset V(P)$.
- (ii) By the assumption of (ii), there exists $v \in V(C)$ such that $y_0v \in E(G)$ and $V(C) X \{v\} \neq \emptyset$, say v_0 . By (i), there exists a path $P = x_1x_2 \cdots x_{|X^+|}y_0 (x_1, x_2, \dots, x_{|X^+|} \in X^+)$. Hence there exists a cycle $C' = Pv_0x_1$ such that $V(T) V(C') X \neq \emptyset$. By the maximality of $|V(C) \cap X|$, $|V(C) \cap X| \geq |V(C') \cap X| = |X^+|$.
- (iii) Let $v_0 \in V(C)$ be a vertex such that $y_0v_0 \in E(T)$. By the assumption of (iii), $v_0 \notin X$. Since $\deg_T^-(v_0) \geq p \geq 2$, $E(V(C) \{v_0\}, \{v_0\}) = E(V(C) \cap X, \{v_0\}) \neq \emptyset$. Let $v_1 \in V(C) \cap X$ such that $v_1v_0 \in E(T)$. Then $\deg_{\langle V(C) \cap X \rangle}^-(v_1) \geq p$, and $\deg_{\langle V(C) \cap X \rangle}^-(v_1) \geq p 1$ for all $v \in V(C) \cap X \{v_1\}$. By applying Lemma 3 to the tournament $\langle V(C) \cap X \rangle$, we obtain $|V(C) \cap X| \geq 2p$.
- (iv) If $|V(C) X| \neq 0$, then $|V(C) \cap X| \geq 2p 1$ by (ii) and Claim 5(i), and (iii). If |V(C) X| = 0, then $\deg^-_{\langle V(C) \rangle}(x) \geq p 1$ for all $x \in V(C) \cap X = V(C)$. By applying Lemma 2 to the tournament $\langle V(C) \rangle$, we obtain $|V(C)| = |V(C) \cap X| \geq 2p 1$.
- (v) We assume that $E(\{y_0\}, X^+) \neq \emptyset$. Let $x_0 \in X^+$ be a vertex such that $y_0x_0 \in E(T)$, then $E(\{x_0\}, V(T) V(C) X) = \emptyset$, and hence $|X^+| \geq 2p$ by Claim 5(ii). Since $V(C) X \neq \emptyset$ by the assumption of (v), (ii) or (iii) holds. Hence $|X| = |V(C) \cap X| + |X^+| \geq 4p$, which contradicts $|X| \leq \min\{4p-1, |V(T)| 1\}$.

Claim 9. Suppose that $|V(T)-X| \ge 2$. Then $|V(C)-X| \ge 1$, $|V(C)| \ge 3$, and $X^- = \emptyset$.

Proof. By Claim 6, we have $|V(C) - X| \ge 1$. This together with $|V(C) \cap X| \ge 1$ implies $|V(C)| \ge 3$. Let $v_0 \in V(C) - X$. Assume that $X^- \ne \emptyset$. Since T is strongly connected, $E(X^+, \{y_0\}) \ne \emptyset$ and $E(\{y_0\}, X^-) \ne \emptyset$ by Claim 2. Let $x_1 \in X^+$ such

that $x_1y_0 \in E(T)$, and let $x_2 \in X^-$ such that $y_0x_2 \in E(T)$. Hence there exists a cycle $C' = v_0^-x_1y_0x_2v_0^+Cv_0^-$ such that $V(T) - V(C') - X \neq \emptyset$, which contradicts the maximality of $|V(C) \cap X|$.

Proof of Theorem 5.

Let p and T be as in Theorem 5. Let X be a subset of V(T) such that $|X| \leq \min\{|V(T)|-1,4p-3\}$, and C, X^+ , X^- be as in the paragraph preceding the statement of Claim 1. In order to obtain $X \subset V(C)$, we assume that $X - V(C) \neq \emptyset$. By Claim 1, we may assume $X^+ \neq \emptyset$ by symmetry. By Claim 5 (i), $|X^+| \geq 2p-1$. In the case where $X^- \neq \emptyset$, $|X^-| \geq 2p-1$ by Claim 5 (i). Hence $|X| = |X \cap V(C)| + |X^+| + |X^-| \geq 1 + 2p - 1 + 2p - 1 = 4p - 1$, which contradicts the definition of X. In the case where $X^- = \emptyset$, $|X| = |X \cap V(C)| + |X^+| \geq 4p - 2$ by Claim 8 (iv), which also contradicts the definition of X. Here we obtain $X \subset V(C)$, and hence |V(C)| = |V(T)| - 1 by Claim 7. This completes the proof of Theorem 5.

Proof of Theorem 6.

Let p and T be as in Theorem 6. Let X be a subset of V(T) such that $|X| \leq 4p-2$, and C, X^+ , X^- be as in the paragraph preceding the statement of Claim 1. In order to obtain $X \subset V(C)$, we assume that $X - V(C) \neq \emptyset$. By Claim 1, we may assume that $X^+ \neq \emptyset$ by symmetry. By Claim 6, |V(T) - V(C) - X| = 1. Let y_0 be as in the paragraph preceding the statement of Claim 8. Since $|V(T)| \geq 4p$, $|V(T) - X| \geq 2$, and hence $X^- = \emptyset$ and $|V(C)| \geq 3$ by Claim 9. We write the cycle $C = v_1v_2 \dots v_lv_1(l \geq 3)$. By Claim 8(v), there exist two vertices v_i , $v_j \in V(C)$ $(1 \leq i < j \leq l)$ such that y_0v_i , $y_0v_j \in E(T)$. By Claim 9, $|V(C) - X| \geq 1$. This together with $|V(C) \cap X| \geq 1$ implies that one of the following holds (subscripts of the letter v are to be read modulo l):

(1)
$$|\{v_i, \ldots, v_{i-1}\} \cap X| \ge 1$$
 and $|\{v_i, \ldots, v_{i-1}\} \cap (V(T) - X)| \ge 1$; or

(2)
$$|\{v_j,\ldots,v_{i-1}\}\cap X|\geq 1$$
 and $|\{v_i,\ldots,v_{j-1}\}\cap (V(T)-X)|\geq 1$.

By symmetry, we may assume that (1) holds. By Claim 8 (i), there exists a path $P=x_1x_2\cdots x_{|X+|}y_0$ $(x_1,x_2,\ldots,x_{|X+|}\in X^+)$. Hence there exists a cycle $C'=Pv_iCv_{j-1}x_1$ such that $V(T)-V(C')-X\neq\emptyset$ and $|V(C')\cap X|\geq |X^+|+1$. By Claim 5(i), $|X^+|\geq 2p-1$. By the maximality of $|V(C)\cap X|, |V(C)\cap X|\geq |V(C')\cap X|\geq |X^+|+1\geq 2p$. Consequently, $|X|=|V(C)\cap X|+|X^+|\geq 4p-1$, which contradicts the definition of X. Here we obtain $X\subset V(C)$, and hence |V(C)|=|V(T)|-1 by Claim 7. This completes the proof of Theorem 6.

Proof of Theorem 7.

Let p and T be as in Theorem 7. Let X be a subset of V(T) such that $|X| \le 4p-1$, and C, X^+ , X^- be as in the paragraph preceding the statement of Claim 1. In order to obtain $X \subset V(C)$, we assume that $X - V(C) \ne \emptyset$. By Claim 1, we may assume that $X^+ \ne \emptyset$ by symmetry. By Claim 5(i), $|X^+| \ge 2p-1$. By

Claim 6, |V(T) - V(C) - X| = 1. Let y_0 be as in the paragraph preceding the statement of Claim 8. Since $|V(T)| \ge 4p + 1$, $|V(T) - X| \ge 2$, and hence $X^- = \emptyset$ and $|V(C)| \ge 3$ by Claim 9. We write the cycle $C = v_1 v_2 \dots v_l v_l$ ($l \ge 3$). By Claim 8(iv), $|V(C) \cap X| \ge 2p - 1 \ge 3$. By Claim 9, $|V(C) - X| \ge 1$. Now we divide into the following two cases.

Case 1. $p \geq 3$.

By Claim 8(v), there exist three vertices v_{i_1} , v_{i_2} , $v_{i_3} \in V(C)$ $(1 \le i_1 < i_2 < i_3 \le l)$ such that $y_0v_{i_j} \in E(T)$ (j = 1, 2, 3). Since $|V(C) \cap X| \ge 3$ and $|V(C) - X| \ge 1$, one of the following holds (subscripts of the letter v are to be read modulo l):

(1)
$$|\{v_{i_1},\ldots,v_{i_3-1}\}\cap X|\geq 2$$
 and $|\{v_{i_3},\ldots,v_{i_1-1}\}\cap (V(T)-X)|\geq 1$; or

(2)
$$|\{v_{i_2},\ldots,v_{i_1-1}\}\cap X|\geq 2$$
 and $|\{v_{i_1},\ldots,v_{i_2-1}\}\cap (V(T)-X)|\geq 1$; or

(3)
$$|\{v_{i_3}, \dots, v_{i_2-1}\} \cap X| \ge 2$$
 and $|\{v_{i_2}, \dots, v_{i_3-1}\} \cap (V(T) - X)| \ge 1$.

By arguing as in the proof of Theorem 6, there exists a cycle C' such that $V(T)-V(C')-X\neq\emptyset$ and $|V(C')\cap X|\geq |X^+|+2$. Then $|V(C)\cap X|\geq |V(C')\cap X|\geq |X^+|+2\geq 2p+1$, and hence $|X|=|V(C)\cap X|+|X^+|\geq 4p$, which contradicts the definition of X.

Case 2. p = 2.

By Claim 8(v), there exist two vertices v_i , $v_j \in V(C)$ $(1 \le i < j \le l)$ such that y_0v_i , $y_0v_j \in E(T)$.

First we consider the case where $j-i \geq 2$ and $i+l-j \geq 2$. Since $|V(C) \cap X| \geq 3$ and $|V(C) - X| \geq 1$, one of the following holds (subscripts of the letter v are to be read modulo l):

(1)
$$|\{v_i, \ldots, v_{j-1}\} \cap X| \ge 2$$
 and $|\{v_j, \ldots, v_{i-1}\} \cap (V(T) - X)| \ge 1$; or

(2)
$$|\{v_j, \ldots, v_{i-1}\} \cap X| \ge 2$$
 and $|\{v_i, \ldots, v_{j-1}\} \cap (V(T) - X)| \ge 1$.

By arguing as in the proof of Theorem 6, there exists a cycle C' such that $V(T)-V(C')-X\neq\emptyset$ and $|V(C')\cap X|\geq |X^+|+2$. Then $|V(C)\cap X|\geq |V(C')\cap X|\geq |X^+|+2\geq 2p+1$, and hence $|X|=|V(C)\cap X|+|X^+|\geq 4p$, which contradicts the definition of X.

Now we consider the case where j-i=1 or i+l-j=1. We may assume that j-i=1 by symmetry. Assume for the moment that there exists a path Q such that the beginning of Q is v_i or v_j , $V(Q) \subset V(C)$, $|V(Q) \cap X| \geq 2$, and $V(C)-V(Q)-X \neq \emptyset$. By Claim 8 (i), there exists a path $P=x_1x_2\cdots x_{|X+|}y_0$ $(x_1,x_2,\ldots,x_{|X+|}\in X^+)$. Hence there exists a cycle $C'=PQx_1$ such that $V(T)-V(C')-X\neq \emptyset$ and $|V(C')\cap X|\geq |X^+|+2$. Therefore $|X|\geq 4p$ by arguing as in the preceding paragraph, which contradicts the definition of X. Assume now that $V(C)-V(Q)-X=\emptyset$ for any path Q such that

the beginning of
$$Q$$
 is v_i or v_j , $V(Q) \subset V(C)$, and $|V(Q) \cap X| \geq 2$.

Let $Q_0=v_iCv_{i-1}$ (throughout the end of this paragraph, subscripts of the letter v are to be read modulo l). Since $|X|\leq 4p-1$ and $|V(T)|\geq 4p+2$, $|V(T)-X|\geq 3$, and hence $|V(Q_0)\cap (V(T)-X)|\geq 2$. Since $V(C)-V(Q)-X=\emptyset$ for any path Q satisfying (*), there exists an integer m with $i+2\leq m\leq l+i-2$ such that $v_{i+1(=j)},\cdots,v_m\in V(T)-X$ and $v_{m+1},\cdots,v_i\in X$. Set $Z_1=\{v_{i+1},\cdots,v_m\}$ and $Z_2=\{v_{m+1},\cdots,v_{i-1}\}$. Since $(\{v_m\}\cup Z_2)\cap \{v_i,v_j\}=\emptyset$, $E(\{y_0\},\{v_m\}\cup Z_2)=\emptyset$. Then

$$E(X^{+} \cup \{y_0\}, \{v_m\}) = \emptyset, \tag{1}$$

and

$$E(X^{+} \cup \{y_0\}, Z_2) = \emptyset.$$
 (2)

Since $V(C) - V(Q) - X = \emptyset$ for any path Q satisfying (*), we also obtain

$$E(\{v_i, \dots, v_{m-2}, v_{m+1}\}, \{v_m\}) = \emptyset,$$
(3)

and

$$E(\{v_i, \dots, v_{m-1}\}, Z_2) = \emptyset.$$
 (4)

By (1) and (3), $e(Z_2 - \{v_{m+1}\}, \{v_m\}) \ge 1$. Let $w_0 \in Z_2 - \{v_{m+1}\}$ such that $w_0 v_m \in E(T)$. By (2) and (4), $\deg_{\langle Z_2 \rangle}^-(w_0) \ge p$ and $\deg_{\langle Z_2 \rangle}^-(w) \ge p - 1$ for all $w \in Z_2 - \{w_0\}$. By applying Lemma 3 to the tournament $\langle Z_2 \rangle$, $|Z_2| \ge 2p$. Therefore $|X| = |Z_2 \cup \{v_i\}| + |X^+| \ge 4p$, which contradicts the definition of X.

Consequently, we obtain $X \subset V(C)$, and hence |V(C)| = |V(T)| - 1 by Claim 7. This completes the proof of Theorem 7.

4 Examples

In this section, we discuss the sharpness of the various conditions in theorems.

Proposition 1. Let $p \geq 2$ be an integer. There exists a strongly connected tournament T with |V(T)| = 4p-1 such that $deg_T^+(x) \geq p$ and $deg_T^-(x) \geq p$ for all $x \in V(T)$, but T has no 4p-1 vertices $x_1, x_2, \ldots, x_{4p-1}$ such that $T-x_i$ $(i=1,2,\ldots,4p-1)$ is strongly connected; that is, there exists a subset X of V(T) having 4p-2 vertices such that $X-V(C) \neq \emptyset$ for every cycle C such that $|V(C)| \leq |V(T)|-1$.

Proof. Let $p \geq 2$ be an integer. Let T_1 and T_2 be tournaments having 2p-1 vertices such that $V(T_m) = \{v_1^m, v_2^m, \dots, v_{2p-1}^m\}$ and $E(T_m) = \{v_i^m v_j^m \mid 1 \leq i \leq 2p-1, i+1 \leq j \leq i+p-1, \ j \text{ is to be read modulo } 2p-1\}$ (m=1,2). We define a tournament T having 4p-1 vertices by

$$\begin{split} V(T) = & V(T_1) \cup V(T_2) \cup \{w_0\}, \\ E(T) = & E(T_1) \cup E(T_2) \\ & \cup \{vw_0 \mid v \in V(T_2)\} \cup \{w_0v \mid v \in V(T_1)\} \\ & \cup \{uv \mid u \in V(T_1), v \in V(T_2)\}. \end{split}$$

Then T has the desired properties. To see this, set $X = V(T_1) \cup V(T_2)$, then $X - V(C) \neq \emptyset$ for every cycle C such that $|V(C)| \leq |V(T)| - 1$.

Proposition 2. Let $p \geq 2$ be an integer. There exists a strongly connected tournament T with |V(T)| = 4p such that $deg_T^+(x) \geq p$ and $deg_T^-(x) \geq p$ for all $x \in V(T)$, but T has no 4p vertices x_1, x_2, \ldots, x_{4p} such that $T - x_i$ $(i = 1, 2, \ldots, 4p)$ is strongly connected; that is, there exists a subset X of V(T) having 4p - 1 vertices such that $X - V(C) \neq \emptyset$ for every cycle C such that $|V(C)| \leq |V(T)| - 1$.

Proof. Let $p \geq 2$ be an integer. Let T_1 and T_2 be tournaments having 2p-1 vertices such that $V(T_m) = \{v_1^m, v_2^m, \dots, v_{2p-1}^m\}$ and $E(T_m) = \{v_i^m v_j^m \mid 1 \leq i \leq 2p-1, i+1 \leq j \leq i+p-1, \ j \text{ is to be read modulo } 2p-1\}$ (m=1,2). We define a tournament T by

$$\begin{split} V(T) = &V(T_1) \cup V(T_2) \cup \{w_1, w_2\}, \\ E(T) = &E(T_1) \cup \{vw_1 \mid v \in V(T_1)\} \cup \{w_2v \mid v \in V(T_1)\} \\ &\cup E(T_2) \cup \{vw_2 \mid v \in V(T_2)\} \cup \{w_1v \mid v \in V(T_2)\} \\ &\cup \{uv \mid u \in V(T_1), v \in V(T_2)\} \cup \{w_1w_2\}. \end{split}$$

Then T has the desired properties. To see this, set $X = V(T_1) \cup V(T_2) \cup \{w_1\}$, then $X - V(C) \neq \emptyset$ for every cycle C such that $|V(C)| \leq |V(T)| - 1$.

Propositions 1 and 2 imply that the cardinality of the set of nonseparating vertices in Theorems 1 and 2 is sharp, and that the bound on the order T is best possible in Theorems 2 and 3.

Proposition 3. Let $p \geq 2$ be an integer. There exist infinitely many strongly connected tournaments T with $|V(T)| \geq 4p+1$ such that $deg_T^+(x) \geq p$ and $deg_T^-(x) \geq p$ for all $x \in V(T)$, but T has no 4p+1 vertices $x_1, x_2, \ldots, x_{4p+1}$ such that $T-x_i$ $(i=1,2,\ldots,4p+1)$ is strongly connected; that is, there exists a subset X of V(T) having 4p vertices such that $X-V(C) \neq \emptyset$ for every cycle C such that $|V(C)| \leq |V(T)| - 1$.

Proof. Let $p \geq 2$ be an integer, and $l \geq 1$ be an integer. Let T_1 and T_2 be tournaments having 2p vertices such that $V(T_m) = \{v_1^m, v_2^m, \dots, v_{2p}^m\}$ and $E(T_m) = \{v_i^m v_j^m \mid 1 \leq i \leq p, i+1 \leq j \leq i+p\} \cup \{v_i^m v_j^m \mid p+1 \leq i \leq 2p, i+1 \leq j \leq i+p-1, j \text{ is to be read modulo } 2p\}(m=1,2),$ and let T_3 be a tournament having l vertices $v_1^3, v_2^3, \dots, v_l^3$ with $E(T_3) = E_1 \cup E_2$, where

$$E_1 = \begin{cases} \{v_i^3 v_{i+1}^3 \mid 1 \le i \le l-1\} & (l \ge 2) \\ \emptyset & (l = 1); \end{cases}$$

$$E_2 = \begin{cases} \{v_i^3 v_j^3 \mid 3 \le i \le l, 1 \le j \le i - 2\} & (l \ge 3) \\ \emptyset & (l \le 2). \end{cases}$$

We define a tournament T by

$$\begin{split} V(T) = &V(T_1) \cup V(T_2) \cup V(T_3), \\ E(T) = &E(T_1) \cup E(T_2) \cup E(T_3) \\ & \quad \cup \{v_1^3 v \mid v \in \{v_1^1, \dots, v_p^1\}\} \cup \{vv_1^3 \mid v \in \{v_{p+1}^1, \dots, v_{2p}^1\}\} \\ & \quad \cup \{v_l^3 v \mid v \in \{v_1^2, \dots, v_p^2\}\} \cup \{vv_l^3 \mid v \in \{v_{p+1}^2, \dots, v_{2p}^2\}\} \\ & \quad \cup \{uv, vw \mid u \in V(T_2), v \in V(T_3) - \{v_1^3, v_l^3\}, w \in V(T_1)\} \\ & \quad \cup \{uv \mid u \in V(T_2), v \in V(T_1)\} \cup E_3, \end{split}$$

where

$$E_3 = \begin{cases} \{v_l^3 v \mid v \in V(T_1)\} \cup \{vv_1^3 \mid v \in V(T_2)\} & (l \ge 2) \\ \emptyset & (l = 1). \end{cases}$$

Then T has the desired properties. To see this, set $X = V(T_1) \cup V(T_2)$, then |X| = 4p, and $X - V(C) \neq \emptyset$ for every cycle C such that $|V(C)| \leq |V(T)| - 1$.

Proposition 4. Let p=2. There exists a strongly connected tournament T with |V(T)|=4p+1 such that $\deg_T^+(x)\geq p$ and $\deg_T^-(x)\geq p$ for all $x\in V(T)$, but T has no 4p vertices $x_1,\ x_2,\ \ldots,\ x_{4p}$ such that $T-x_i$ $(i=1,2,\ldots,4p)$ is strongly connected; that is, there exists a subset X of V(T) having 4p-1 vertices such that $X-V(C)\neq\emptyset$ for every cycle C such that $|V(C)|\leq |V(T)|-1$.

Proof. We define a tournament T having 4p + 1 = 9 vertices v_1, v_2, \ldots, v_9 by

$$\begin{split} E(T) &= \{v_1v_2, v_2v_3, v_3v_1\} \cup \{v_7v_8, v_8v_9, v_9v_7\} \\ &\cup \{v_5v_i, v_iv_6 | 7 \leq i \leq 9\} \cup \{v_6v_5\} \\ &\cup \{v_iv_4 | 1 \leq i \leq 3, 7 \leq i \leq 9\} \cup \{v_4v_5, v_4v_6\} \\ &\cup \{v_iv_i | 5 \leq i \leq 9, 1 \leq j \leq 3\}. \end{split}$$

Then T has the desired properties. To see this, set $X = \{v_i | 1 \le i \le 3, 6 \le i \le 9\}$, then |X| = 4p - 1 = 7, and $X - V(C) \ne \emptyset$ for every cycle C such that $|V(C)| \le |V(T)| - 1$.

Proposition 3 implies that the cardinality of the set of nonseparating vertices in Theorems 3 is sharp. Proposition 4 shows that for p=2 and |V(T)|=4p-1, a result like Theorem 3 no longer holds.

Acknowledgments

I would like to thank Professor Yoshimi Egawa for the help he gave to me during the preparation of this paper. I am also grateful to the referees for helpful comments and valuable suggestions toward the improvement of this paper.

References

- [1] L. Lovász, Combinatorial problems and exercises, North-Holland, Amsterdam, 1979.
- [2] J. W. Moon, On subtournaments of a tournament, Canad. Math. Bull. 9 (1966), 297–301.
- [3] C. Thomassen, Whitney's 2-switching theorem, cycle spaces, and arc mappings of directed graphs, J. Combin. Theory Ser. B 46 (1989), 257–291.

(Received 20 Oct 2004; revised 11 May 2006)