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Abstract

This paper is primarily concerned with giving an upper bound of the
basis number of the lexicographic product of graphs.

1 Introduction

Unless otherwise specified all graphs considered here are finite, undirected, simple
and connected. Our terminologies and notations will be standard except as indicated.
Let G be a graph and ey, ey, ..., e @) be an enumeration of its edges. Then any
subgraph S of E(G) corresponds to a (0,1)-vector ((i,Ca,. .., (pe)) € (Z2)FE)
with (; =1ife; € Sand (; =01ife; ¢ S. Let C(G), called the cycle space, be the
subspace of (Z,)IF(@I generated by the vectors corresponding to the cycles in G. We
shall say that the cycles themselves, rather than the vectors corresponding to them,
generate C(G). It is well known that if r is the number of components of G, then
dim C(G) = |E(G)| = [V(G)| + .

A basis of C(G) is called d-fold if each edge of G occurs in at most d of the
cycles in the basis. The basis number of G, b(G), is the smallest non-negative integer
number d such that C(G) has a d-fold basis. The required basis of C(G) is a basis
which is b(G)-fold. Let G and H be two graphs, ¢ : G — H be an isomorphism and
BB be a (required) basis of C(G). Then B = {¢(c)|c € B} is called the corresponding
(required) basis of B in H. The fold of an edge in a given basis B is the number of
cycles of B containing this edge. The first use of the basis number of a graph was
the theorem of MacLane when he classified graphs into planar and non planar with
respect to b(G). In fact, MacLane proved that a graph G is planar if and only if
b(G) < 2. Formally, the basis number was introduced by Schmeichel when he proved
that there are graphs with arbitrary large basis numbers. Moreover, Schmeichel
proved that b(K,) < 3.
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Let G; and G5 be two graphs. The direct product G = Gy AN Gy is the
graph with the vertex set V(G) = V(G;) x V(G:2) and the edge set E(G) =
{(u1,u2)(v1,v2)lugvy € E(Gy) and upvy € E(Gq)}. The lexicographic product G =
G1[G3] is the graph with the vertex set V(G) = V(G;) x V(G3) and the edge set
E(G) = {(u1,u2)(v1,v9)|ugvy € E(Gy) or uy; = vy and upve € E(G,) }. The carte-
sian product G = Gy X G4 is the graph with the vertex set V(G) = V(G1) x V(Gs)
and the edge set E(G) = {(u1,us)(v1,ve)|uivy € E(G1) and us = vy or ugvy €
E(G,) and uy = vy}

The basis number of the lexicographic product graphs was studied by Schmeichel
[7] and Ali [1] who proved the following results.

Theorem 1.1 (Schmeichel) For each n > 5,b(P[N,]) < 4 where N,, is a null graph
with n vertices.

In fact, Schemeichel proved the more general case when he proved that b( K, ,,) <
4. Ali [1] proved the following result:

Theorem 1.2 (Ali) For each n,m > 5,b(K,[Ny]) < 3+ 2b(K,)

The direct product was studied by Jaradat [4] who proved the following results.
Moreover, Jaradat classified trees with respect to the basis number of their direct
product with paths of order greater than or equal to 5

Theorem 1.3 (Jaradat) For each bipartite graphs G and H, b(GAH) < 5+b(G) +
b(H).

Theorem 1.4 (Jaradat) For each bipartite graph G and cycle Cp,, b(G A Cp,) <
3+ b(G).

Alsardary [2] gave the following result:

Theorem 1.5 (Alsardary) For every n > 2 and d > 1, we have b(K2) < 2d + 1
where K is the cartesian product of d copies of K,.

The results cited above give rise to the following problem whether similar results
hold for the lexicographic product. More precisely, we have the following question.
Problem. Does there exist an upper bound of the basis number of the lexicographic
product of two graphs with respect to the basis number of the factors?

In this paper we focus our attention on obtaining a complete solution to this
problem. The method employed in this paper is based in part on ideas of Ali [1],
Jaradat [4] and Schmeichel [7]. Since trees do not have a uniform form, we state the
following result of Jaradat which gives an appropriate decomposition for any tree
and will be useful in our work.
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Proposition 1.1 (Jaradat) Let T be a tree of order > 2. Then T can be decomposed
into an edge-disjoint union of subgraphs S;, i = 1,2,...,r for some integer r, such
that, the following holds:

(i) For each i > 1, S; is either a star or a path of order 2 and Sy is a path.

(i1) For each v € V(T), if dr(v) > 2, then v belongs to exactly two of the subgraphs
S;, and if degy(v) = 1, then v belongs to only one of them.

(iti) V(S;) N (UZIV(S)) = ol where v € V(S;) such that degs,(v}") =
Magyev (s, degs,(v) with deguz;isj(vy)) =1 for eacht=2,3,...,r, and vy) # v§])
for each i # j.

In the rest of this paper fg(e) stands for the number of cycles in B containing e
and E(B) = UpepE(b) where B C C(G). Bg and By denote the required basis of G
and H, respectively.

2 Main Results

In this section we give an upper bound of the basis number of the lexicographic
product of two graphs. Let M be a null graph with vertex set {a;,as,...,a,} and
let P, = uv be a path of order 2. Then

B = {(u,a;)(v,a)(u,aj1)(v, ag1)(u,a5) : 1 < 5,0 <m— 1}

is the Schemeichel’s 4-fold basis of C(P,[M]) (see Theorem 2.4 in [7]). Moreover, (1)
ife = (u,a1)(v,a,) ore = (u,a,)(v,a;) or e = (u,a1)(v,a;) or e = (u, a,)(v, an), then
fele) = 1. (2) If e = (u,a1)(v, ;) or (u,a;)(v,a1) or (u,a,)(v,a;) or (u,a;)(v,an),
then fg(e) < 2. (3) if e € E(P[M]) and is not of the above form, then fz(e) < 4.
The graph P, [T'] contains the graph P, [NW(T)‘] as a subgraph where Ny (7)) is the

null graph with the vertex set V(7). One can see that V (P [T]) =V (P2 [N\V(T)ID
and E(P,[T)) = E (P, [Nyv(r)])UE (M) where M = (uxT) U (v x T). More-
over, P, [NW(T)‘] is isomorphic to Ky, v(r)- Note that dim C (P [T]) = dim
C (P, [Nivry]) +2|B(T).

Lemma 2.1. Let T be a tree and P, = uv be a path of order 2. Then b (P, [T]) < 4.
Moreover, if |V(T)| > 14, the equality holds.

Proof. Let T = @1 S; as in Proposition 1.1. Let V(S;) = {v%”,vé”,vg”, . ,vﬁfi)}
where degg, (v :Fni — 1. Define B = B* U B** Where B* is the Schmeichel ’s 4-fold
basis of the subspace C ( [NIV T)‘D and B** = U B; where B; = B;, U B;, and
Biu = {al) = (u,v{")(v,0") (v, v{") (v, ] )1)(u UP) j=3,... U
{as) = wvwaw%wwwxmv>y

» Yng

By = {af) = (v, (w, v (w, 01" (w, v ) (0,00Y) 1 = 3,y pU
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{afd = (0,0 (w, o) (w, vf") (0, 00) }
We now proceed by induction on n; to show that B, is linearly 1ndependent for
each i = 1,2,...,k. If n; = 2, then B;, consists of one cycle aZu and so it is
hnearly 1ndependent. Assume n; > 3 and it is true for less than n;. Note that
Bi, = {a } "U {al¥), }. By the inductive step, both of {ag-iz "5t and {al), }

are linearly independent. Since a{?), contains the edge (v,vﬁ?)(v,vgi)) which is not

in any cycle of {a% }?51 , as a result By, = {ayu)}?;2 is linearly independent. One
can see that any linear combination of B;, = {a%};;Z must contain an edge of
E (v x S;). Moreover, E (v x S;) N E (v x S;) = ¢ for each i # j. Thus, U¥_,B;, is
linearly independent. Similarly, one can show that U¥_,B;, is linearly independent.
By remarking that

' 1 1
B(UL,Bu) N B(UL,B) = { (o) (v,0), (w0l (0,0), (w, ) (0, o)}
which is an edge set of a path, we have that any linear combination of cycles of UE_, B,
must contain at least one edge which is not in any linear combination of cycles of
UY_,B;,. Therefore, B** is linearly independent. Also, every linear combination of
cycles of B** contains at least one edge of E(v x S;) U E(v x S;) which is not in any

cycle of Py [N\V(T)I]- Thus, B is linearly independent. To this end,

k
o =V(T)|+k—1,
i=1

And so,
k
i=1
= 2/V(T)| -2
Thus,
IB] = [B*[+|B"
(V(D)I? = 2AV(T)| + 1) + 2IV(T) - 2)
V(D) -1

= dim C(BR]T]).

Therefore, B is a basis for C (P, [T]). We now show that B is a 4-fold basis. Let
ec E(RT)). (1) Ifee _E(uxT)UE(v xT), then fz-(e) = 0and fg(e) < 2. (2) If
eEM*{(u 1)%))( (l)) (U,U£))( (Z)) i=1,2,...,kand j=1,2, 3,...,n;} U
{(u v (v, U(Z)) (v v(k))(u,vj(-z)), 1=1,2,...,kand j =1,2,3,... ,ni}, then

» Yng ? Tk
fo:(e) < 2 and fg-(e) < 2. (3) If e € E (P [Nyv(ry]) = {M U {(v,0®)(u,v®)}},
then fp-(e) < 4 and fg~(e) = 0. Hence, b(FP2[T]) < 4. To complete the proof,
we eliminate any possibility for C (P, [T]) to have a 3-fold basis when |V(T)| > 14.
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Suppose that C (P, [T]) contains a 3-fold basis B, we show that such a basis does
not exist. We consider the following cases:

Case 1. Suppose that B counsists of only 3-cycles. Then |B| < 6|E(T)| because
any 3-cycle must contain an edge of (v x T) U (v x T') and the fold of any of these
edges is at most 3. Since |B] = |V(T)]> = 2|V(T)| + 2|E(T)| + 1, as a result
|V(T)|* =2 |V(T)|+2|E(T)|+1 < 6|E(T)|. Thus, |V(T)|*—6|V(T)|+5 < 0, which
implies (|V(T)| — 5) (]V(T)| — 1) < 0, which does not hold if |V/(T')| > 6.

Case 2. Suppose that B consists only of cycles of length greater than or equal to
4. Then 4 ([V(T)* = 2|[V(T)| + 2 |E(T)| + 1) < 3([V(T)[ +2|E(T)|). Therefore,
|V(T)|* — 6|V(T)| + 2 < 0 which does not hold if |V(T')| > 6.

Case 3. Suppose that B consists of s cycles of length 3 and ¢ cycles of length greater
than or equal to 4. As in Case 1, s < 6|E(T)|. Since |E(Py[T])| = |V(T)* +2 |E(T)|
and the fold of every edge of P[T] in B is at most 3 and 3s edges are used to
form the s 3-cycles, as a result t < {(3 <|V(T)|2 +2 |E(T)|) - 35) /4J where |z]
is the greatest integer less than or equal to x. Thus dim C (P, [T]) = [V(T)|* —
2|V(T)|+2|B(T)|+1 = s+t < s+ (3 ([V(T)[ + 2 |B(T)|) - 3s) /4], which implies
that [V(T)* = 1 < (s + 3[V(T)[* +6[V(T)| —6) /4. Therefore, 4|V(T)|* —4 <
6 [E(T)|+3[V(T)[* +6|V(ZT )| 6. And so |[V(T)| —4 < 3|V(T)* +12|V(T)| — 12.
To this end we have |V/(T 12|V(T)|—16 < 0, which does not hold if |V(T')| > 14.
The proof is completed.

The graph T) [T] consists of |E(T})| copies of Py [N\V(Tz)l] and |V(T})| copies
of Ty. In the following result we give an upper bound of the basis number of the
lexicographic product of two trees independent of their orders.

Lemma 2.2. For each pair of trees Ty and Ty, we have b(T [Tz]) < Maz{2A(T}),4}.

Proof. Let E(Tl) = {Pz( ) = a1b1 Pz( ) = a2b2 (lE( b = a|E(Tl)|b|E(Tl)‘} be the
edge set of 7. Now, for eachi =1,2,..., |E(T1)|7 deﬁne B; to be the basis of le) [Ty]
|E(T1)]
as in Lemma 2.1. Moreover, set B = U1 B;. We now show that B is a linearly

independent set. Note that, V(Py”) N V(P2 )} is either an empty set or it contains
only one vertex, say a;. Therefore,

, , ; i W)y _
s mn st m= {3,y SIS,

S|E(Ty)]

Suppose that Zl: cir + fj Cor + o+ X ey = 0 (mod 2) where ¢;; € B;.
r=1 r=1 r=1

S1 S92
Without loss of generality, we may assume that s; #20. Then > ¢, = Y cop+---+
r=1 r=1

S1B(T1)] s s S18(T1)|

1 1 .
21 ¢|e(y))» (mod 2). Hence, E( @1 c1r) = E( 631 Cor@--- 631 C|B(m)|r) Where @ is
= = r= r=
the ring sum. Therefore, by (1) E( éé ¢1) is a subgraph of the forest (a;x T3)U (b X
r=1

81
T,), which contradicts the fact that E( € ¢i,) is a cycle or an edge-disjoint union of
r=1
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cycles. Since

|E(T1)]

B = > IBi
i=1
()

> (V)P -1)

= V(TP BT — |E(T)
dim C(T) [T3]),

B is a basis for C(Ty [T3]). It is an easy task to show that B satisfies the bound which
is stated in the theorem. The proof is completed.

In the rest of this paper T¢ denotes a spanning tree of G with maximal degree
as small as possible and A(T) denotes the maximal degree of Tg.

Lemma 2.3. For each connected graph G and tree T, we have b(G[T]) < Maz
[4,2A(G),2 +b(G)}.

Proof. Let V(T) = {al,ag,...,aw(m,}. We may assume that ajy(r) is an
end point of 7' which is different from U;’Q as in Proposition 1.1. Note that
GT] = Te[T)U (Ueerc)-Ee) € [NW(T)‘]). Let B* be the basis of Tg[T] as de-
fined in Lemma 2.2. Let B** = U B. where B, is the basis of e[T] as

e€E(G)—E(Tg)

in Lemma 2.1 and B*™ be the corresponding required basis of Bg in G X ajy (1.
Now, set B = B* U B* U B*** . Since each cycle of B*** contains at least one edge
e € E(G x ay(r)) — E(Te % av (1)), which is not in B*, we have that B* U B***
is linearly independent. By arguments similar to the one in Lemma 2.2, one can
show that B** is linearly independent. It is an easy task to see that for any edge
e = uw € E(G) — E(T), we have that E(uw [T]) N (E(T5 [T]U E(G x ary)) C

{E(u x T)U E(w x T) U (u, ajv ) (w, a‘V(T)‘)} which forms edges of a forest. Thus,
t s
if ¥ 1; = ¥ ¢; (mod 2) where ¢; € B*UB** and [; € B**, then [y ©®l, & --- ® 1, is

=1 =1
a subgraph of the forest. This contradicts the fact that Iy @l & --- @D [; is a cycle
or an edge disjoint union of cycles where @ is the ring sum. Thus, B is linearly
independent. Since

dim C(G) = |E(G)| - |[V(G)|+1

|E(G)| - |E(T6)l,
As a result,
1B = >, B

e€E(G)—E(Tg)

> (v@mPE-1

€€ E(G)— E(Tg)

dim C(G)(|V(T)2 - 1).



BASIS NUMBER OF LEXICOGRAPHIC PRODUCTS 311

Note that
|B** | = dim C(G).
Thus,
1Bl = [B*[+|B™[+|B™" |

= V(D) |E(T6)| — | E(T¢)| + dim C(G)(|V(T)[* — 1) + dim C(G)
= |[V(T))* (|E(Te)| + dim C(G)) — (|E(T6)| + dim C(G)) + dim C(G)
= V(D) |E(G)| ~ |E(T6)|
= V(D) |E(G)| - [V(Te)| +1

= V(TP IE@G) - IV(G)| +1

= dim C(G[T)).
Therefore, B is a basis. Let e € E(G [T]). (1) If e € E(G X ajy(1))), then fz-ug+(e) <
2 and fgee(e) < b(G). (2) If e € E(Upev(e)E(v x T))], then fa-up--(e) < 2A(G)
and fg--(e) =0. (3) If e € E(e [T]) — [E(G x a(r)) YU E(Uev(e)E(v x T))], then
fs-us(€) < 4 and fg-- () = 0 where ¢ € E(G). The proof is completed.
Theorem 2.4. For each two connected graphs G and H, b(G[H]) <
Max{4,2A(G) +b(H),2 +b(G)}.
Proof. Let B* = B where B is the basis of G [Ty] as defined in Lemma 2.3. Let

B* = U B, where B, is the corresponding required basis of By in v x H.
veV(G)

E(vx HYNE(u x H) = ¢ for each u # v. Thus, B* is linearly independent.
Moreover, each cycle of B** contains an edge of the form Ejy () x (E(H) — E(T))
which is not in any cycle of B* where Ejy(g) is a null graph with vertex set V(G).
Thus B = B* U B** is linearly independent. Since

Bl = 18] +15")
V(Tw)[* |E(G)| = [V(G)| + 1+ |V(G)|dim C(H)
V(Ta)P IE@)] + V(G BE)| — [V(G)IV(H)| +1
= dim C(G[T]),

B is linearly independent basis. Now, we conclude the theorem by showing that B sat-
isfies the fold which stated in the theorem. Let e € E(G[H]). (1) Ife € E(G[Nyv(m))]),
then fg.(e) < Max{4,2+b(G)} and fgz(e) =0 (2) If e € Uyep)E(u x H), then
fs-(e) < 2A(G) and fp~(e) < b(H). The proof is completed.

Now we give an example where the bound of the above Theorem is achieved. By
specializing G and H in the above Theorem into a cycle and a path, respectively,
and by using arguments similar to those three cases in Lemma 2.1 we obtain the
following result.

Corollary 2.5. For any cycle C and path P of order greater than or equal to 15,
b(C'[P]) = 4.
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