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Abstract

An identity of F.H. Jackson is used to derive general bilateral summa-
tion formulae for g-series which unifies several generalizations of Gasper’s
bibasic summation formula with different independent bases, and we also
obtain the dual formula for the different generalization related to Gasper’s
formula.

1 Introduction

Gasper [4] showed that some bibasic summation formulae derived by Carlitz [2], Al-
Salam and Verma [1], and Wm. Gosper could be extended to the following indefinite
bibasic summation formula:

Theorem 1. If n is a non-negative integer, then

Z": (1—ap"q*) (1 =bp*/q")  (a,b;p)i(c,a/bc; q)x y
= (I —a)(1-0) (q,aq/b; q)x(ap/c, bep; p)k
_ (ap,bp; p)u(cq, aq/be; q)n

(¢, aq/b; q)n(ap/c,bep; p)n’

(1)

where p and q are independent bases and a,b, ¢ are arbitrary parameters.

He used it for obtaining quadratic and cubic summation and transformations formu-
lae for g-hypergeometric series. A little later Gasper and Rahman [5] obtained the
following bilateral extension of Gasper’s bibasic summation formula (1) by using a
difference operator.
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Theorem 2. If m,n are non-negative integers, then

i (1 —adp*q")(1 —bp*/dg*)  (a,b;p)i(c,ad®/bc;q)y "
v, (L—ad)(1-0b/d)  (dg,adq/b;q)(adp/c,bep/d; p)i
(1—a)(1=b)(1—c)(1—ad?/bc)
d(1 —ad)(1=2b/d)(1 —c¢/d)(1 — ad/bc)
(ap, bp; p)n(cq, ad?q/bc; @),

(dq, adq/b; q)n(adp/c, bep/d; p)n

(c¢/ad, d/bc;p)m+1(1/d,b/ad; q)m+1

(1/¢,be/ad?; q)m+1(1/a, 1/b; p)mia

where n,m = 0,+£1,+2,....

(2)

They use this formula to derive some rather general summation and transformation
formulae. It should be noted that in (2) and elsewhere we employ the standard
convention of defining

n A + Qg1 + - + Ay, m < n,
(3) Zak: 0, m=n+1,
k=m 7(an+l+an+2+'“+a’m*1)’ mzn+2.

Jain and Verma [8] also used the difference operator to obtain a summation
formula involving three independent bases:

Theorem 3. If m,n are non-negative integers, then

z": (c = d)(1 = cyp* P*3/d)(1 — yP*q " /d)(1 — p*q*5/d)
P (1=8)1 =) (1 —y)(1—cyp/d?)
(8;0)(c; Qi ly; P)i(cyB/d? pP/q)rg”

(dg; @)x(cpB/d; p)k(yB/d - pP/q; pP/q)r(cy P/ d; P)y,
{ (1/d; @)ims1(d/cB; p)mi1 (d/yB; PP/ Q) ms1(d/ cy; P)mia

(1/B:2)m1(1/ 6 Qi1 (/Y5 P)insa (42 /cyB; pP/ @)t
(085 p)n(cq; Qn(yP; P)nlcyB/d? -pP/q;pP/Q)n}

(dq; @)n(cpB/d; p)n(yB/d - pP/q)n(cyP/d; P)n |

When P = ¢, (4) reduces to the summation formula (2).

Chu [3] obtained a generalization of Gasper-Rahman’s formula (2) (after suitably
renaming the sequences so as to remove redundant sequences).

(4)

Theorem 4. If m,n are non-negative integers, then

e Ot ) T = 0,)(1 = 5)(1 = )1 = 224,
B 2 (T aaobo) o — ) 2
" od ]:1[(1 —ab;)(1 = =2)(1 = adb;)(1 — FZa;)]

=)
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(1~ a0)(1 — (1~ boe) (1 - “bo)
a(l —aagbo) (1 — £)(bo — §2)(1 — %i)

- 1faj><1fﬂ><1fcb-><f#bj)
{]1:[1 [ 1 —ab;)(1—=2)(1 — adby)(1 - ﬁ(lj):|
3 O [(1—ab;)(1 — =) (1 — adb;)(1 — £a;)
j_Hm{ (1= ay)(1 = )1 = cby) (1 — 22y) ”

where (a;) and (b;) are arbitrary sequences such that none of the terms in the de-
nominators vanish.

This reduces to the formula (2) on setting a; = ap®, b, = ¢* and replacing a and d
by d and a/b, respectively.

Recently, Subbarao and Verma [9] obtained a generalization of Chu’s summa-
tion formula (5) involving four arbitrary sequences which is also obtained by using
difference operator.

Theorem 5. If m,n are non-negative integers, then

n (17ukvkwkzk)(1fM)(lfﬂﬂ)(lfw)

(6) Z UV U W WiV

ke——m (1 — Uol}owozo)(l — %)(1 — %)(1 — %)

k—1
L= =) —wp(d - g
X
k W2 Wiz vz o
11— 222 (1 — 23y (1 — 24 (1 — 220

_ (1= ug)(1 = v3)(1 —w3)(1 — 23)
(1 — uguowo2o) (1 — $220)(1 — 020 )(1 — Hoo)
x{ﬁ[ (1 —u2)(1 = 02)(1 = w?)(1 - 23)] }

_ 'U]U)]Zj)(l _ /LLJTUJZ])(I _ u]v]zj)(l _ u]v]-u)])
z
J

Uj vj Wi

J

(1= uf)(1 = of)(1 —wi)(1 = 2})

-1

j=—m

{(1 iR (] (] (] )”

where {uy), (vy),(wi), (z1) are arbitrary sequences such that none of the terms in
denominators vanish and m,n are non-negative integers.

The authors observed that the proofs of (1)-(6) are mainly obtained by means
of difference operators and the sticking point is how to obtain the closed form of
difference of two consecutive terms of a sequence. We find that we can use F. H.
Jackson’s identity [7] as our starting point for getting the summation formula. The
identity is:

a(l—b)(1—c)(1—d)(1—a’bed) (1 —a)(1—abc)(1l — abd)(1 — acd)
(1 —ab)(1 —ac)(1 — ad)(1 — abed) (1 — ab)(1 — ac)(1 — ad)(1 — abed)”

(M 1=
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In fact, as Jackson pointed out, this identity is the instance n = ¢ = 1 of his ¢-
analogue of Dougall’s theorem [7]. Jackson’s identity also can be written in another
form:

(1 —a)(1—abe)(1 —abd)(1 —acd)  a(l—0b)(1—c)(1—d)(1— a®bed)

@) = a0 — a0 = ad) (1 —abed) (1 — ab)(1 —ac) (1 = ad)(1 — abed)”

If one summation formula is derived from (7), the summation formula derived from
(8) is called its dual summation formula, and vice versa.

In this paper we will use (7) or (8) to derive a generalization of Subbarao and
Verma’s summation formula (6) which generalizes Chu’s summation formula (5) in-
volving four arbitrary sequences and other general bilateral summations in Section 2.
Subsequently, in Section 3, we shall exhibit the dual formulae for the above men-
tioned identities.

2 Unified formulae

We begin this section by giving two applications of Jackson’s identity (7).

Theorem 6. If {ay), (br),{ck), (dr) are arbitrary sequences such that none of the
terms in denominators vanish and m,n are non-negative integers, then

Zn: ak(l — bk)(]. — Ck)(l — dk)(]. - a%bkckdk)
W= (1 =b0)(1 = co)(1—do)(1 — agbocody)

kf[ [(1 = a;)(1 = ajbje;) (1 — azb;d;) (1 — ajc;d;)]

ﬁ (1 = a;b;)(1 = aje;) (1 — ajd;) (1 — ajbjc;d;)]

— )(1 — aoboco)(l — Cbobodo)(l — aocodo)
(1 b (1 — C())(l — do)(l — a%boc()d())
{ ﬁ (L= aby)(1 = a;¢)(1 = ayd;) (1 - ajbjcjdm}
= L (1= “J )1 = a;bjc;) (1 — azbsd;) (1 — aje;d;)

o { (1 —a;)(1 = a;bje;)(1 — a;b;d;) (1 — aicfdf)} } .

(1 = a;bj)(1 = aje;)(1 — a;d;)(1 — a;bjc;dy)

=1

<.

Proof. Let

(1= a;)(1 — agbie;)(1 — a;bydy) (1 — aje;d;)

<
—

»
3
I

(1= a;b)(1 = aje;) (1 — a;d;) (1 — a;bjc;d;)

ﬂ:j: 1=

<

for n =0,%1,£2, ..., and define the difference operator A by

AS, = Sy — Sp_1-
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Then
Ask = Sk — Sk—1
k=1
[T (1= a;)(1 = ab;e;)(1 — a;b;d;) (1 — ajc;d;)
_ =
T k-1

(1= a;b;)(1 = aje;) (1 — a;d;) (1 — a;bjc;d;)
j=1
{(1 — ak)(l - akbkck)(l — akbkdk)(l — akckdk) . }
(1 — akbk)(l — akck)(l — akdk)(l — akbkckdk) '

X

n
Now summing with respect to k from —m to n, and using the fact that > As; =
k=—m
Sn — $_m—1 and keeping in mind (8), we get (9) on simplification.
It should be noticed that (9) is (6) when a;, b;, ¢;, d; are replaced by z?, w;vj/u;z;,
wju;/vjzj, w0 /w;z;, respectively.
Similarly, if we let

n

1T a;(1 = b;)(1 = ¢;)(1 — dj)(1 — a3bsc;dy)

Jj=1

1(1 —a;b;)(1 — ajc;)(1 — azd;) (1 — a;bjc;d;)

Sp =

—

J

where n =0, 1,..., and use (7), we can get the dual summation formula of (9), that
is:

Theorem 7. If {ay), (br),{ck), (dk) are arbitrary sequences such that none of the
terms in denominators vanish and m,n are non-negative integers, then

" (1 — (,Lk)(l — akbkck)(l — akbkdk)(l — (,Lk(lkdk)
Z (]. — ao)(]. — aoboco)(l - Cbobodo)(l — aocodo)

k=—m

IT [a;(1 = b;)(1 = ¢;)(1 = d;) (1 — afbje;d;)]

jlill[(l = a;0;)(1 — a;¢;)(1 = a;d;) (1 — a;bjc;d;)]
ao(l - bo)(l - Co)(l - do)(]. — angCOdo)
(1 — (lo)(l — (lobg(ﬁo)(l — aobodo)(l — (lo(lodo)
& [ = aby) (1 — aje;) (1 — ajd;) (1 — a;bic;dy)
) { 11 [ a;(1 = b;)(1 = ¢;)(1 — dj)(1 — afbjc;dy) }

ml o ai(=0)(1 = ¢)(1 = dy)(1 = adbje;d;)
- ]1;11 {(1 —a;b;) (1 = a;¢) (1 — a;d;)(1 — ajbjcjdj)} } '

(10) X

j=—m

By setting

abepi Q17T T i Y T epiQi

in (10), we get a summation formula:

) d Pig7 Piy g7
ajzach2],bj= 4 _ v d il
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" (1 — abeQ%)(1 — ap®*

(11) >

)(
it (1—abe)(1—a)(5—1)(5—1)
G R (e Su(ad: prP Q)
(d¥; %)k(ac” qQ, qu)k(abquQ§ %)k(%pq%; pq%)k

(1= 2)(1 — ad)(1 b
(1 —abc)(d —ad)(1 -2
)

(adpgPQ; pqPQ),

)
L
(G’CPPQA el n(a’bp €9 7Q)n(bc g9 )n

(npors
¢ ¢ PP d paP’ pgP
P 1.pP 1. d.
7 (57%)m+1(a7pT)m+l(E7Z$)7ﬂ+l(b_ %)’ﬂhq
d . . . P
(a7%)m+1(%7%)m+1(%7 qQ)m+1(ad7 Q)m+1

Letting m = 0,c = (%)" in (11), we have:

Corollary 1. If n is a non-negative integer, then
(1 - ab(£%)"Q) (1 — ap™) (b — AP*)((£5)" — dg™)
12
oy b= D) - d)
)"

X s a0
SN i MU NG ek JNCTSNG O
(@52 22 (o) h%: P20, (b P, (E ) 3% 5
(- ad(1 = d)a— (56— (X))
(1= a)b—d)a - (D)1 —dED)’

which is the generalization of (2.8) in [5].
By setting m = 0,d =1 in (11), then we obtain

2 (1= abe@) (0P~ — P¥)(p~* — ap®)(cq™* = ¢¥)
(13) 2 M= ab) (=B —a)(1=0)
NS X UF: NG NG
(2, 20, (a2, ), (bl ), (e, T L,

(abel; 52),, (b22; 22),,(c 725 72) ., (apg PQ; paPQ),,
p

PQ. ¢P PQ . pP :
(%;%)n(ac’%;%) (ab2e; 242), (bcqu7qu)

Letting ¢ = (£5)", then we have:

Corollary 2. If n is a non-negative integer, then
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n (1 — ab(ZLYQ%*)(bP~* — PKY(p=F — ap®) (&L g~k — ¢F
(14) Z( ($6)"Q™) ,1 )(p p )((IZQ) " —q")
(L= a1 - D1 - — (&)
y (ab(EE)" B2),(0; 12) (E5)" L) (a quwg)cgk 5
= On0
(T 03), (a2 1) (a2 o), (6 o) s o,
which is the generalization of (2.3) in [4].
If we let
ng(l —a;)(1=0;)(1 —¢;)(1 — E*%%)
Sp =
(1= Eay)(1 = F)(1 - Ec))(1 - B%%)
where n =0,1,..., and E is a complex parameter, by using (8), then we obtain the

generalization of Jain-Verma summation formula (4).
Theorem 8. If m,n are non-negative integers, then

" a1 - B)(1 - 25)(1 - 4E)(1 - are, )

Z apE

e (1= ao)(1—bo)(1 — co)(1 — E5acn)

(1= a5)(1 = b;)(1 = ¢)(1 — )

ﬁﬁl‘E%ﬂl—%Xl—qu1_£g@}

J

(15) X

_ ﬁ (1 - Bay)(1 - B)(1 = Be;) (1 — =)
S| (U= a) (L= b)) (1= ) (1= 529)
L (1= a)(1 = b))(1 = ) (1 = 5%)

=i | (1= Bay)(1 = 3)(1 = Be)(1 - Z)

If in (15) we replace E, a;,b;,¢; by ¢/d, Bp?, cq’, yP?, respectively, we obtain Jain-
Verma’s summation formula (4), which in turn incorporates (2) and (1) as special
cases.
3 Dual formulae
Let us now give the dual formula of (15).
Theorem 9. If m,n are non-negative integers, then

o (1—ar)(1—0bk)(1—cp)(l— EQM)

k=—m 0’0(1 - %)(1 - COE)(l - aOCOE)
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(1-E)* _I;I[( — )1 =51 - a;¢; E)]

ﬁ 1 — Eay)(1 - ’;z><1 — Bey)(1— %)1

==
o] L
—
—~
—

\
QO
N
=

Dj
S

\(‘

—

{19[ { (1—-Ea;)(1
j==m | a;(1 = E)( —;%)( —Ci’l)(l—ajch)

I a;(1 = B)(1 = 25)(1 = ZE)(1 = a;; B)

- (1= Be)(1 - B%2)

by a similar method as in the proof of (9), we can obtain the result.
Summation formula (16), on setting £ = ¢/d and replacing a;, bj, ¢; by Bp, e,
yP7 | respectively, reduces to the dual summation formula of (4), which is:

Corollary 3. If m,n are non-negative integers, then
n (1= BpF)(1 = eg") (1 — yP*)(1 - 2z
o (1— 90— 5 - %)

By setting P = ¢,8 = b,y = % in (17), we get the dual formula of the Gasper-
Rahman’s bibasic summation formula (2), which is:

Corollary 4. If m,n are non-negative integers, then

z": (1= bpM)(1 = ed)(1 - 55 ¢") (1 — aph)

= (1= =31~ ad)
(b — teystp(a) (4 4, (1 — 2d)¥(ad; py),

18) (%p; p)k(dg; )i (%q; )i (“p; )i

(53 P)m+1 (55 D1 (g Dimerr (g3 P

_(m+1 C \m .
(b teymetp= (" (0 (1= 2y (L pg)ng
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\n rb+1 ad\n
(b= %)"pU") (3 £),(1 — 5)"(adpa; pa).
(%p; P)n(dg; o (L a5 @)n(“Lp; )
From the formula (18), we can see the dual formula of the bibasic summation formula

(2) has four dependent bases. If we let p = 1, then we can get the bilateral summation
formula

S (1—a)(1=b)(1 —cq (*“dz 7*)

M
k; (1 —ad)(b—d)(1 - 5)(1 - 5)
(d = ©)*(cb — ad)*(§; @)r(ad; g)x
(d — cb)(c — ad)*(dg; @) (5 q: )
_ (bed — dg)m+1( —ad)™ 1(d Q)m+1(ad7(I)77L+l
- (BPed = Pt (be — ad)™ (5 @) (og Dt
(d—c)"(cb — ad)"(4q; q)n(adg; q)n,
(d — cb)r(c — ad)(dg; ¢)n (5 @)
When m = 0 and d = 1, (18) reduces to the following dual formula of Gasper’s
formula (1).

(19)

Corollary 5. If n is a non-negative integer, then
2 (1 =ap") (1 =bp*)(1 = eq")(1 = £4)
ey
(1= 00— )l s (s pale
(@ @) (5 Or(cbp; p)i(Ep; P)k
=00 — 2" (44 2), (apg; pa),
(4 D) (30 D)n(cbp; p)n (D3 P)n

k

(20)

By setting p = 1 and replacing 1/b by b in (20), we can get an interesting formula:

(1= eq)(1— L) (1= 0)*(c— ab)*(b: (e gl

(@) Z = o1=2) (b= e — ) (g a)e abg: s
_ (1 =9"(c- ab)"(bq Dn(ag; q)n
(0= )" (c— a)'(q: labsg)n
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