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Abstract

A family of sets in the plane is said to have a 3-transversal if there exists a
set of 3 points such that each member of the family contains at least one of
them. A conjecture of Grünbaum’s says that a planar family of translates
of a convex compact set has a 3-transversal provided that any two of its
members intersect. Recently the conjecture has been proved affirmatively
(see [1]). We provide a straightforward proof for the conjecture for the
family of translates of a closed convex quadrilateral without parallel sides
in the plane. Moreover, in our proof we obtain exactly the 3-transversals,
i.e. the concrete 3-point sets the conjecture claims. The proof is valid
for some other convex polygons and it is likely that we can prove the
conjecture in the same straightforward way.

For brevity’s sake, a family of sets is said to be Π3, or to have a 3-transversal
if there exists a set of 3 points such that each member of the family contains at
least one of them. The family is said to be Π1

2 if every two sets of the family have a
nonempty intersection. Grünbaum’s conjecture says

Conjecture For a family of translates of a compact convex set in the plane, Π1
2

implies Π3.

In a recent paper by M. Katchalski and D. Nastir (see [2]) the above conjecture
of Grünbaum was mentioned again. Karasev [1] gives an affirmative answer to the
conjecture. We provide a straightforward proof for the conjecture for the case of a
quadrilateral instead of a general compact convex set. In the same way we can prove
the conjecture for triangles, parallelograms and trapezoids, etc. Accordingly, it is
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Figure 1: Quadrilateral ABCD and its related trapezoid ABCD0

likely to prove the conjecture in a similar straightforward way. The proof is com-
pletely different from [1]. Moreover, in our proof we obtain exactly the 3-transversals,
i.e. the concrete 3-point sets the conjecture claims.

First, we introduce some terminology.

Let x+ and x− denote half-planes bounded by the line x with x+ ∩ x− = x.

Two half-planes are related if one of them is a translate of the other. Related
half-planes are ordered by inclusion so that x+ < y+ implies that x+ is contained in
y+ and x+ �= y+.

Let lAB denote the line determined by points A and B. Let relint AB denote
the relative interior of the line segement AB, that is, the line segement without its
endpoints. Let int ABCD denote the interior of the polygon ABCD.

Theorem 1. For a family K of translates of a closed convex quadrilateral ABCD
with AB ∦ CD and AD ∦ BC, Π1

2 implies Π3.

Proof. See Fig. 1. Note that convex quadrilateral ABCD = ∩4
i=1l

+
i , where l1∩l4 = A,

l1 ∩ l2 = B, l2 ∩ l3 = C and l3 ∩ l4 = D. Assume without loss of generality that
both l3 and l4 intersect the two open rays l1\l−2 and l2\l−1 . Through A draw the line
l5 ‖ l2, intersecting l3 at D0. Note that the trapezoid ABCD0 = ∩il

+
i (i = 1, 2, 3, 5)

and we define it as the related trapezoid of the convex quadrilateral ABCD. Let
|AD0| = a, |BC| = b, |CD0| = d and |AB| = c . Assume without loss of generality
that |CD| = λd where 1

2
< λ < 1.

For any K ∈ K, let K ′ be the related trapezoid of K, and note that K ′ = ∩il
+
i (K ′)

(i = 1, 2, 3, 5) where l+i (K ′) is related to l+i for i = 1, 2, 3, 5. Let K′ = {K ′ : K ′ is a
related trapezoid of K, K ∈ K}. Then K′ is Π1

2 since K is Π1
2. We denote l+i (K′) =

max
{
l+i (K ′) : K ′ ∈ K′} and suppose l+i (K ′

i) = l+i (K′) (i = 1, 2, 3, 5), and that the
trapezoid A1B1C1D1 = ∩il

+
i (K′) (i = 1, 2, 3, 5 ); we have ∪K′∈K′K ′ ⊆ A1B1C1D1,

and therefore ∪K∈K ⊆ A1B1C1D1. Let |A1D1| = a1, |B1C1| = b1, |A1B1| = c1 and
|C1D1| = d1 and let c1

c
= d1

d
= β. Then 1 ≤ β ≤ 2 since K′ is Π1

2.

Case 1 β = 1

See Fig. 2. Note that β = 1 implies b1 ≤ 2b since K is Π1
2. Then a1 = b1 −

(b − a) ≤ a + b. Let M1, N1 be midpoints of A1B1 and C1D1 respectively and let
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Figure 2: β = 1
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Figure 3: 1 < β ≤ 2, b < b1 ≤ 2b − a

|M1P1| = |P1P2| = |P2N1|.
For any K ∈ K, let MN = K ∩ M1N1; then |MN | = a+b

2
since l2(K) = lB1C1

and λ > 1
2
. However, |M1P1| = |P1P2| = |P2N1| = 1

3
|M1N1| = a1+b1

6
≤ a+3b

6
. Thus

|MN | > |M1P1| = |P1P2| = |P2N1|. It follows that MN∩{P1, P2} �= Ø and therefore
K ∩ {P1, P2} �= Ø, which implies that K is Π3.

Case 2 1 < β ≤ 2.

It is easy to see that b1 > b.

Subcase 2.1 b < b1 ≤ 2b − a.

See Fig. 3. |B1M1| = c. M1N1 ‖ B1C1. So |C1N1| = d. Let P1 be the midpoint
of M1N1 and let E1, F1 be midpoints of B1M1, C1N1. On the line segment E1F1, set
|E1P2| = |P2P3| = |P3F1|.

For any K ∈ K, it is easy to see that l2(K) must lie between lB1C1 and lM1N1 .

(a) l2(K) lies between lB1C1and lE1F1 .

Let EF = K ∩ E1F1. It is easy to see that |EF | ≥ a+b
2

since λ > 1
2
. However,

|E1F1| = 2b1−b+a
2

implies that |E1P2| = |P2P3| = |P0F1| = 2b1−b+a
6

, so we have
|EF | ≥ |P2E1| = |P2P3| = |P3F1|. It follows that EF ∩ {P2, P3} �= Ø, and therefore
K ∩ {P1, P2, P3} �= Ø.

(b) l2(K) lies between lE1F1and lM1N1 .

Let MN = K∩M1N1. It is easy to see that |MN | ≥ a+b
2

and |M1N1| = b1−b+a.

Then we have |M1P1| = |P1N1| = b1−b+a
2

, which implies that |MN | > |M1P1| =
|P1N1|. As a result, P1 ∈ MN and therefore K ∩ {P1, P2, P3} �= Ø.
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Figure 4: 1 < β ≤ 2, 2b − a < b1 ≤ 2b
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Figure 5: Quadrilateral ABCD and its related trapezoid ABCD0

Subcase 2.2 2b − a < b1 ≤ 2b.

See Fig. 4. Here |B1B2| = |C1C2| = b, B2B3 ‖ A1B1, C2C3 ‖ C1D1, |B1M1| = c,
M1N1 ‖ B1C1. Let E1, F1 be midpoints of B1M1 and C1N1. Draw E1F1, meeting
C2C3 at P2 and meeting B2B3 at P3. Then {P2, P3} ⊆ relint E1F1 since |E1F1| =
2b1−b+a

2
> b, P2 ∈ relint E1P3 since |E1F1| < 2b. Let P1 be the midpoint of M1N1.

For any K ∈ K, it is easy to see that l2(K) lies between lB1C1 and lM1N1 since
K ∩ K2 �= Ø.

(a) l2(K) lies between lB1C1 and lE1F1 .

Let EF = K ∩ E1F1, then |EF | ≥ a+b
2

since λ > 1
2
. Notice that |P2P3| =

5b−2b1−a
2

> 0 and |EF | > |P2P3|. Moreover, lC2C3 ⊆ l+3 (K) and lB2B3 ⊆ l+1 (K)
since K is Π1

2, and it is clear to see that P2 ∈ EF when l3(K) = lC2C3 and P3 ∈ EF
when l1(K) = lB2B3 . Then we conclude that EF ∩ {P2, P3} �= Ø which implies
K ∩ {P1, P2, P3} �= Ø.

(b) l2(K) lies between lE1F1 and lM1N1 .

Let MN = K ∩ M1N1, then |MN | ≥ a+b
2

since λ > 1
2
. However, |M1P1| =

|P1N1| = b1−b+a
2

implies that |MN | ≥ |M1P1| = |P1N1|, then we have P1 ∈ MN and
therefore K ∩ {P1, P2, P3} �= Ø.

Subcase 2.3 2b < b1 < 5b−a
2

.

See Fig. 5. In the trapezoid ABCD0, let H be the midpoint of side CD0. Then
H ∈ relint CD since λ > 1

2
. Draw AH, then AH ⊆ int ABCD.

See Fig. 6. In the trapezoid A1B1C1D1, |B1M1| = c, M1N1 ‖ B1C1, |B1B2| =
|C1C2| = b. So, B2 ∈ relint B1C2 since b1 > 2b. B2B3 ‖ A1B1, C2C3 ‖ C1D1. Then
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Figure 6: 1 < β ≤ 2, 2b < b1 ≤ 5b−a
2

{B3, C3} ⊆ relint M1N1 since |M1N1| = b1−b+a > b+a > b. Let O = B2B3∩C2C3,
it is easy to see that O ∈ int A1B1C1D1 since B2 ∈ relint B1C2. Let P2 be the
midpoint of OB3. Through P2 draw E1F1 ‖ B1C1, meeting C2C3 at Q. On the line
segment B1C2 set |B0C2| = b, then B0 ∈ relint B1C2 since |B1C2| > b. Through
B0 construct B0A0 ‖ A1B1 meeting E1F1 at J . Then the trapezoid A0B0C2C3 �
the trapezoid ABCD0. Let H0 be the midpoint of C2C3. Since |B2C2| = b1 − 2b,

we have |OC2| = b1−2b
b−a

d <
5b−a

2
−2b

b−a
d = d

2
, and therefore O ∈ relint C2H0. However,

|OC3| = 3b−a−b1
b−a

d, so |C2Q| = |OC2| + 1
2
|OC3| = b1−b−a

2(b−a)
d > d

2
. It follows that

H0 ∈ relint C2Q. Let P1 = A0H0 ∩ E1F1, then P1 ∈ relint JQ. Let P3 be the
midpoint of M1N1.

For any K ∈ K, it is easy to see that l2(K) must lie between lB1C1 and lM1N1

since K is Π1
2.

(a) l2(K) lies between lB1C1and lE1F1 .

Let EF = K ∩ E1F1; then |EF | ≥ |JP1|. Since |E1F1| = b1+b+a
2

, we have

|JQ| = 3b−b1+a
2

. Since |H0Q| = b1−2b
2(b−a)

d, it follows that |P1Q| = a(b1−2b)
b−a

. So we

have |JP1| = |JQ| − |P1Q| = (b−a)(3b−b1+a)−2(b1−2b)a
2(b−a)

and |P1P2| = |JP2| − |JP1| =

3b − b1 − |JP1| . Then |EF | − |P1P2| ≥ |JP1| − |P1P2| = 2 |JP1| − (3b − b1) > 0. It
follows that |EF | > |P1P2|. Moreover, lC2C3 ⊆ l+3 (K) and lB2B3 ⊆ l+1 (K) since K is
Π1

2, P1 ∈ EF when l3(K) = lC2C3 and P2 ∈ EF when l1(K) = lB2B3 , so we conclude
that EF ∩ {P1, P2} �= Ø which implies K ∩ {P1, P2, P3} �= Ø.

(b) l2(K) lies between lE1F1 and lM1N1 .

Let MN = K ∩ M1N1; then |MN | ≥ b1−b+a
2

since |F1N1| = 3b−a−b1
2(b−a)

d < d
2

< λd.

However, |M1P3| = |P3N1| = b1−b+a
2

implies that |MN | ≥ |M1P3| = |P3N1|, so it
follows that P3 ∈ MN and therefore K ∩ {P1, P2, P3} �= Ø.

Subcase 2.4 5b−a
2

≤ b1 < 3b − a.

See Fig. 7. Here |B1M1| = c, M1N1 ‖ B1C1, |B1B2| = |C1C2| = b, B2P2 ‖
A1B1, C2P1 ‖ C1D1. Let E1, F1 be the midpoints of B1M1 and C1N1. Draw E1F1

intersecting B2P2 at Q and C2P1 at P3. Let O = lP1C2 ∩ lP2B2 . Then O ∈ relint P1C2

since |OC2| = b1−2b
b−a

d < d and P1 ∈ relint M1P2 since |M1N1| = b1 − b + a < 2b. We

also have |P3C2| = d
2

and |OC2| ≥ |P3C2|, it follows that P3 ∈ relint OC2 ∪ {O} and
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Figure 7: 1 < β ≤ 2, 5b−a
2

≤ b1 < 3b − a

Q ∈ relint E1P3 ∪ {P3}.
For any K ∈ K, l2(K) lies between lB1C1 and lM1N1 since K is Π1

2.

(a) l2(K) lies between lB1C1 and lE1F1 .

Let EF = K ∩ E1F1; then |EF | ≥ a+b
2

since λ > 1
2
. At the same time, we

have |EF | > |QP3| since |QP3| = 2b1−5b+a
2

. Noticing that lP1C2 ⊆ l+3 (K) and
lB2P2 ⊆ l+1 (K) since K is Π1

2, and P3 ∈ EF when l3(K) = lP1C2 since |P3C2| < λd,
we conclude that P3 ∈ EF , which implies that K ∩ {P1, P2, P3} �= Ø.

(b) l2(K) lies between lE1F1and lM1N1 .

Let MN = K ∩ M1N1; then |MN | ≥ a+b
2

. Combining |P1P2| = 3b − a − b1 > 0,
we find that |MN | ≥ |P1P2|. It is easy to see that lP1C2 ⊆ l+3 (K) and lP2B2 ⊆ l+1 (K).
Moreover, we have P1 ∈ MN if l3(K) = lP1C2 and P2 ∈ MN if l2(K) = lP2B2 . It
follows that MN ∩ {P1, P2} �= Ø, and therefore K ∩ {P1, P2, P3} �= Ø.

Subcase 2.5 b1 = 3b − a.

See Fig. 8. Now |B1M1| = c. M1N1 ‖ B1C1. Hence |M1N1| = b1 − b + a = 2b.
So we have l2(K1) = l2(K3) = lM1N1 since K1 ∩ K3 �= Ø. Thus β = 2. Let P be the
midpoint of M1N1; then P ∈ l1(K2) since K1 ∩ K2 �= Ø and K2 ∩ K3 �= Ø.

For any K ∈ K, it is easy to see that l2(K) lies between lB1C1 and lM1N1.

(a) l2(K) = lB1C1 .

It is easy to see that K = K2 since K ∩K1 �= Ø and K ∩K3 �= Ø. Thus P ∈ K.

(b) l2(K) lies between lB1C1 and lM1N1 (excluding lB1C1 and lM1N1).

Let MN = K ∩ M1N1. If P /∈ MN , then either MN ⊆ M1P\ {P} or MN ⊆
PN1\ {P}. Therefore either K ∩K3 = Ø or K ∩K1 �= Ø, a contradiction since K is
Π1

2. So we have P ∈ MN , which implies P ∈ K.

(c) l2(K) = lM1N1.

Let MN = K ∩ M1N1; then |MN | = b. However, |M1P | = |PN1| = b. So we
have P ∈ MN , and therefore P ∈ K.

By (a), (b), (c), we can conclude that K is Π1. Therefore K is Π3 if b1 = 3b − a.



HELLY-TYPE PROBLEMS FOR CONVEX QUADRILATERALS 215

A1

M1

B1 C1

N1

D1

K1

K2

K3

P

Figure 8: 1 < β ≤ 2, b1 = 3b − a

Subcase 2.6 b1 > 3b − a.

It is easy to see that K1 ∩ K3 = Ø if b1 > 3b − a, a contradiction since K is Π1
2.

So b1 cannot be greater than 3b − a.

The proof is complete.
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