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Abstract

Minimal 1-saturating sets in the projective plane PG(2, q) are considered.
The classification of all the minimal 1-saturating sets in PG(2, q) for
q ≤ 8, the classification of the smallest minimal 1-saturating sets in
PG(2, q), 9 ≤ q ≤ 13 and the determination of the smallest size of
minimal 1-saturating sets in PG(2, 16) are given. These results have been
found using a computer-based exhaustive search that exploits projective
equivalence properties.

1 Introduction

Let PG(n, q) be the n-dimensional projective space over the Galois field GF (q). For
an introduction to such spaces and the geometrical objects therein, see [6]–[9].

Definition 1 A point set S in the space PG(n, q) is �-saturating if � is the least
integer such that for any point x ∈ PG(n, q) there exist � + 1 points in S generating
a subspace of PG(n, q) in which x lies.

Definition 2 [13] A �-saturating set of l points is called minimal if it does not
contain a �-saturating set of l − 1 points.

A q-ary linear code with codimension r has covering radius R if every r-positional
q-ary column is equal to a linear combination of R columns of a parity check matrix
of this code and R is the smallest value with such property. For an introduction
to coverings of vector spaces over finite fields and to the concept of code covering
radius, see [1].

The points of a �-saturating set in PG(n, q) can be considered as columns of a
parity check matrix of a q-ary linear code with codimension n + 1. So, in terms of
coding theory, a �-saturating l-set in PG(n, q) corresponds to a parity check matrix
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of a q-ary linear code with length l, codimension n + 1, and covering radius � + 1
([2], [5],[10]). Such a code is denoted by an [l, l − (n + 1)]q(� + 1) code.

Note that a �-saturating set in PG(n, q), � + 1 ≤ n, can generate an infinite
family of �-saturating sets in PG(N, q) with N = n + (� + 1)m, m = 1, 2, 3, . . .;
see [1, Chapter 5.4], [2], [3, Example 6] and references therein, where such infinite
families are considered as linear codes with covering radius � + 1.

This paper deals with the minimal 1-saturating sets in PG(2, q). We give the
classification of the minimal 1-saturating sets in PG(2, q), q ≤ 8, the classification
of the smallest minimal 1-saturating sets in PG(2, q), 9 ≤ q ≤ 13 and we determine
the size of smallest minimal 1-saturating sets in PG(2, 16). These results have been
found using a computer-based exhaustive search that exploits projective equivalence
properties among sets of points. Properties of the �-saturating sets in PG(n, q) are
presented in [4].

In the projective plane PG(2, q) over the Galois field GF (q), an n-arc is a set of
n points no 3 of which are collinear. An n-arc is called complete if it is not contained
in an (n + 1)-arc of the same projective plane. The complete arcs of PG(2, q) are
examples of minimal 1-saturating sets, but there are minimal 1-saturating sets that
are not complete arcs.

We use the following notations in PG(2, q): m(2, q, 1) is the size of the largest
minimal 1-saturating sets, m′(2, q, 1) is the size of the second largest minimal 1-
saturating sets and l(2, q, 1) is the size of the smallest minimal 1-saturating sets.

The values of m(2, q, 1) and m′(2, q, 1) have been determined in [4]. These results
and some constructions of minimal 1-saturating sets of such sizes have been reported
in Section 2. Section 3 contains the description of the algorithm we used to classify
the minimal 1-saturating sets. Section 4 contains the classification of all the minimal
1-saturating sets in PG(2, q) for q ≤ 8, the classification of the smallest minimal
1-saturating sets in PG(2, q), 9 ≤ q ≤ 13 and the determination of the value of
l(2, 16, 1).

2 The values of m(2, q, 1), and m′(2, q, 1)

In this section we recall some theorems from [4] that allow us to determine the
values of m(2, q, 1) and m′(2, q, 1) and give constructions of minimal 1-saturating
sets of such sizes. Let θ(n, q) = (qn+1 − 1)/(q − 1) = |PG(n, q)|.
Theorem 1 In the space PG(n, q), let SA be a (θ(n − 1, q) + 1)-set consisting of a
whole hyperplane V of θ(n − 1, q) points, plus one point P not belonging to V . The
point set SA is a minimal 1-saturating (θ(n − 1, q) + 1)-set in the space PG(n, q).

Remark 1 Theorem 1 can be considered as an example of using [13, Lemma 10].
This lemma is treated as the “direct sum” construction in covering codes theory
[1, Section 3.2].

Theorem 2 Any θ(n− 1, q) + 1 points in the space PG(n, q) are a 1-saturating set.
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Corollary 1 The greatest cardinality of a minimal 1-saturating set in a space
PG(n, q) is equal to θ(n − 1, q) + 1, i.e., m(n, q, 1) = θ(n − 1, q) + 1 for all q.

Corollary 2 In the plane PG(2, q), m(2, q, 1) = q + 2 and a (q + 2)-set containing
a whole line l of q + 1 points and one point P /∈ l is a largest minimal 1-saturating
set.

Example 1 For q even, in the plane PG(2, q) a hyperoval of q +2 points is another
example of a largest minimal 1-saturating set.

Theorem 3 Let l = {L1, L2, . . . , Lq+1} be a line in the plane PG(2, q) consisting
of the points Li. Denote by P an external point for l. Let T be a point on the line
through the points L1 and P and P �= T �= L1. Let us consider a (q + 1)-set SB =
{L3, L4, . . . , Lq+1, P, T}. Then the point set SB is a minimal 1-saturating (q + 1)-set
in a plane PG(2, q), q ≥ 3.

Corollary 3 In PG(2, q), q ≥ 3, m′(2, q, 1) = q + 1.

Remark 2 For q odd, in the plane PG(2, q) an oval of q + 1 points is another
example of a minimal 1-saturating (q + 1)-set.

Remark 3 Since in the plane PG(2, q) a q-arc is always incomplete [6], the minimal
1-saturating sets of size q cannot be arcs.

3 The computer search for the non-equivalent minimal
1-saturating sets

The program that computes the classes of the minimal 1-saturating sets has been
written using MAGMA, a system for symbolic computation developed at the Uni-
versity of Sydney.

The program performs a breadth-first search to construct all the non-equivalent
minimal 1-saturating sets of size belonging to the interval [2, M ]. The program
maintains two lists: the non-equivalent minimal 1-saturating sets of size k and the
non-equivalent sets of size k that are not 1-saturating, k ∈ [2, M ]. For k = 2 the first
list is empty, while the second list contains one set of two points, as all the sets of
two points are equivalent.

The non-equivalent sets of size k are obtained by expanding all the non-equivalent
sets of points of size k−1 that are not 1-saturating; let them be Sk−1

i , i ∈ Ik−1. Each
Sk−1

i is expanded in the following way. The orbits of the stabilizer group of Sk−1
i

are considered. As the sets Sk−1
i ∪ {P} and Sk−1

i ∪ {Q} are equivalent if P and
Q belong to the same orbit, it is sufficient to consider just one expansion of size k
for each orbit. Let Ek

j , j ∈ Jk be the sets of size k obtained by extending all the

Sk−1
i , i ∈ Ik−1. The first non-equivalent set of size k is Ek

1 . The other non-equivalent
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sets are obtained by comparing each Ek
j with the non-equivalent Ek

l already selected:
if Ek

j is equivalent to an Ek
l already selected it is neglected, otherwise Ek

j is selected
as a representative of another class of non-equivalent sets of size k.

To reduce the computational complexity of this phase a pre-classification strategy
is adopted. For each Ek

j the stabilizer group Gk
j is computed and the projective

equivalence is tested only between Ek
j and the non-equivalent sets already found with

stabilizers of the same cardinality as Gk
j . In this way, at the cost of computing the

order of the stabilizer group for each Ek
j , the number of computations of projective

equivalence between pairs of sets of points is decreased. This is convenient because
computing the order of the stabilizer is less expensive than computing whether two
sets of points are equivalent and the number of computations of the stabilizers is
|Jk|, while the number of tests of equivalence is of order O(|Jk| × |Ik|).

When the non-equivalent sets of size k have been computed they are tested to
check if they are 1-saturating and in this case they are tested to check if they are
minimal.

4 The non-equivalent minimal 1-saturating sets

This section contains the classification of the minimal 1-saturating sets in PG(2, q)
for q ≤ 8, the classification of the smallest minimal 1-saturating sets in PG(2, q),
9 ≤ q ≤ 13 and the value of l(2, 16, 1). The first two theorems deal with the case
q = 2, 3.

Theorem 4 m(2, 2, 1) = l(2, 2, 1) = 4 and there are two minimal 1-saturating sets
of size 4 up to projective equivalence.

Proof. In PG(2, 2) there exists only one complete arc [6]. It is the hyperoval and
has size 4. Another example of minimal 1-saturating set is given by Theorem 1. In
PG(2, q) all the arcs of size 4 are equivalent up to projective equivalence. Also the
sets consisting of a line and an external point are equivalent in PG(2, q), therefore
the two examples are unique. �

Theorem 5 l(2, 3, 1) = 4 and m(2, 3, 1) = 5. The minimal 1-saturating sets of both
sizes are unique up to projective equivalence.

Proof. In PG(2, 3) the minimum size of a complete arc is four [6], therefore l(2,3,1)=
4. Theorem 1 gives a minimal 1-saturating set of size 5. A set of 5 points consisting of
three collinear points and two other points contains a complete arc of size 4, therefore
it is not minimal. The two examples are unique as in the previous theorem. �

The other cases have been solved using the program described in the previous
section. The following table presents the classification of the minimal 1-saturating
l-sets in PG(2, q), 4 ≤ q ≤ 8. The asterisk * denotes that the 1-saturating sets
of the smallest size are complete arcs, while the subscripts indicate the number of
non-equivalent minimal 1-saturating sets.
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q l(2, q, 1) Sizes l of minimal m′(2, q, 1) m(2, q, 1)
1-saturating sets = q + 1 = q + 2

with l(2, q, 1) < l ≤ q

3 4∗1 41 51

4 51 51 63

5 66 66 71

7 63 77 831 93

8 6∗1 72, 860 918 105

Sizes of the minimal 1-saturating l-sets in PG(2, q), 3 ≤ q ≤ 8

The following tables give the classification in PG(2, q) of the minimal 1-saturating
sets for q = 4, 5 and of the smallest and the largest minimal 1-saturating sets for
q = 7, 8. For the complete classification see [12].

In the examples we represent the elements of the Galois fields as follows. If q is
prime, the elements are GF (q) = {0, 1, . . . , q−1} and we operate on these modulo q.
If q is a power of a prime, we denote GF (q) = {0, 1 = α0, 2 = α1, . . . , q − 1 = αq−2}
where α is a primitive element. This defines multiplication. For addition we use a
primitive polynomial generating the field. For example, we can design the table of
Zech logarithms. In this work the primitive polynomials are x2 + x + 1 for q = 4,
x3 + x2 + 1 for q = 8 and x2 + x + 2 for q = 9 [11]. All the examples contain the
points (0, 0, 1), (0, 1, 0), (1, 0, 0).

In the tables, the column “Group” describes the stabiliser group of the minimal
1-saturating set up to PGL(3, q) if q is prime, up to PΓL(3, q) otherwise. With
the symbol Gi we denote a group of order i. For the meaning of the other symbols
see [14]. The columns “li” contain the number of lines intersecting the minimal
1-saturating set in i points.

Size Group l0 l1 l2 l3 l5
5 (1, 3, 3), (1, 2, 0) D6 5 8 7 1
6 (0, 1, 2), (1, 2, 0), (1, 0, 3) G48 2 12 3 4
6 (1, 2, 1), (1, 3, 3), (1, 1, 2) G720 6 15
6 (1, 1, 0), (1, 2, 0), (1, 3, 0) G360 15 5 1

The minimal 1-saturating sets in PG(2, 4)
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Size Group l0 l1 l2 l3 l4 l6
6 (0, 1, 1), (1, 1, 3), (1, 2, 1) D4 8 12 9 2
6 (1, 2, 2), (1, 1, 3), (1, 4, 1) G120 10 6 15
6 (1, 1, 0), (1, 1, 3), (1, 3, 4) S3 7 15 6 3
6 (1, 1, 0), (1, 1, 3), (1, 4, 1) Z2 8 12 9 2
6 (1, 1, 2), (1, 1, 3), (1, 4, 1) S3 9 9 12 1
6 (0, 1, 4), (0, 1, 1), (1, 1, 3) Z2 × Z4 7 14 9 1

7
(1, 1, 0), (1, 2, 0),
(1, 3, 0), (1, 4, 0)

G480 26 6 1

The minimal 1-saturating sets in PG(2, 5)

Size Group l0 l1 l2 l3 l4
6 (1, 3, 2), (1, 5, 3), (1, 1, 5) G36 24 18 15
6 (1, 1, 5), (1, 4, 4), (1, 1, 5) A4 24 18 15
6 (1, 5, 3), (1, 1, 5), (1, 2, 0) S3 23 21 12 1

The minimal 1-saturating sets in PG(2, 7) of smallest size

Size Group l0 l1 l2 l3 l4 l8

9
(105), (125), (115),
(110), (116), (120)

S4 8 36 6 4 3

9
(110), (120), (130),
(140), (150), (160)

G2016 48 8 1

9
(105), (115), (110),
(120), (103), (113)

Z3 9 33 9 3 3

The minimal 1-saturating sets in PG(2, 7) of largest size

Size Group l0 l1 l2 l3
6 (1, 7, 1), (1, 4, 7), (1, 6, 5) S4 34 24 15

The minimal 1-saturating set in PG(2, 8) of smallest size
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Size Group l0 l1 l2 l3 l4 l5 l6 l9

10

(1, 7, 0),
(1, 7, 1), (1, 7, 7),
(1, 7, 4), (1, 2, 0),
(0, 1, 2), (1, 4, 0)

Z6 12 42 13 4 2

10

(0, 1, 3),
(1, 7, 1), (1, 4, 5),
(1, 1, 2), (1, 1, 5),
(0, 1, 2), (1, 4, 0)

Z2 12 43 11 4 2 1

10

(1, 3, 0),
(1, 7, 0), (1, 6, 0),
(1, 1, 0), (1, 2, 0),
(1, 4, 0), (1, 5, 0)

G10584 63 9 1

10

(1, 7, 0),
(1, 7, 1), (1, 4, 6),
(1, 1, 0), (1, 2, 0),
(0, 1, 2), (1, 4, 0)

Z3 12 42 12 6 1

10

(1, 5, 4),
(1, 2, 2), (1, 7, 1),
(1, 3, 5), (1, 1, 6),
(1, 6, 3), (1, 4, 7)

G1512 28 45

The minimal 1-saturating sets in PG(2, 8) of largest size

For 9 ≤ q ≤ 16, the complete classification of the minimal 1-saturating sets, using
the program of Section 2, would take too long. However we determined the values
of l(2, 1, q) and also classified the smallest minimal 1-saturating sets in PG(2, q),
9 ≤ q ≤ 13. These results are presented in the next theorem.

Theorem 6 The following hold:
l(2, 1, 9) = 6 and only one minimal 1-saturating set of size 6 exists up to PΓL(3, 9);
l(2, 1, 11) = 7 and only one minimal 1-saturating set of size 7 exists up to PGL(3, 11);
l(2, 1, 13) = 8 and two minimal 1-saturating sets of size 8 exist up to PGL(3, 13);
l(2, 1, 16) = 9.

The following table describes the smallest minimal 1-saturating sets in PG(2, q),
9 ≤ q ≤ 13.
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q Size Group l0 l1 l2
9 6 (1, 3, 3), (1, 8, 6), (1, 5, 8) G120 46 30 15

11 7
(1, 7, 10), (1, 1, 1),
(1, 2, 3), (1, 10, 5)

Z7� Z3 70 42 21

13 8
(1, 4, 10), (1, 8, 11),

(1, 12, 6), (1, 10, 3), (1, 1, 1)
D7 99 56 28

13 8
(1, 9, 10), (1, 2, 11),

(1, 12, 6), (1, 10, 4), (1, 1, 1)
S3 99 56 28

The smallest minimal 1-saturating sets in PG(2, q), q = 9, 11, 13
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