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Abstract

The Overfull Conjecture states that a graph G with 3∆(G) ≥ n(G) is
Class 2 if and only if it has a ∆(G)-overfull subgraph. M. Plantholt
showed that the Overfull Conjecture is true for graphs with even order
and high minimum degree. In this paper we look at graphs with odd
order and show under which restrictions the Overfull Conjecture holds
true for these.

1 Introduction

All graphs considered are finite and simple. We use standard graph terminology.
By τd we denote the number of vertices of degree d in a graph. If S ⊂ V (G) is
a set of vertices of G, then SC denotes the vertex set V (G) \ S and G[S] denotes
the subgraph of G induced by S. The chromatic index χ′(G) of a graph G denotes
the minimal number of colours needed to colour the edges of the graph such that
incident edges receive different colours. It is obvious that χ′(G) ≥ ∆(G) always,
where ∆(G) is the maximum degree of G. The classical result of Vizing [10] states



122 BONGARD, HOFFMANN AND VOLKMANN

that χ′(G) ≤ ∆(G) + 1. Vizing’s result gave rise to a classification of graphs into
Class 1 if χ′(G) = ∆(G), and Class 2 if χ′(G) = ∆(G)+1. For regular graphs, being
Class 1 is equivalent to the graph being 1-factorable. The well known 1-Factorization
Conjecture states that every ∆-regular graph G is 1-factorable if 2∆ ≥ |V (G)|.

The best known result concerning this conjecture has been proved independently
by Chetwynd and Hilton [2] as well as Niessen and Volkmann [7].

Theorem 1.1 (Chetwynd and Hilton [2], Niessen and Volkmann [7]) Let G be a
∆-regular graph with even order n. If 2∆ ≥ (

√
7 − 1)n, then G is 1-factorable.

In the following we only consider odd order subgraphs of G. If H is a subgraph of G
such that |V (H)| ≥ 3 is odd and |E(H)| ≥ 1, then any matching in H can contain at

most |V (H)|−1
2

edges. Consequently, χ′(H) ≥ 2|E(H)|
|V (H)|−1

. As χ′(G) ≥ χ′(H) for any sub-

graph H of G, we know that G is Class 2, if 2|E(H)|
|V (H)|−1

> ∆(G). Such a subgraph H is

called ∆(G)-overfull. In the case that we have equality, the subgraph is called ∆(G)-
full. It is easy to see that ∆(H) = ∆(G) for any ∆(G)-overfull subgraph. Niessen [5]
showed that the odd order of a ∆(G)-overfull subgraph is necessary. Chetwynd and

Hilton [1] conjectured that a graph G with ∆(G) > |V (G)|
3

is Class 2 if and only if
G has a ∆(G)-overfull subgraph. This conjecture is known as the Overfull Conjecture.

In [5] and [6] Niessen presented algorithms which find a ∆(G)-overfull subgraph
in polynomial time. As a corollary of his algorithms, Niessen has been able to prove
the following theorem.

Theorem 1.2 (Niessen [5], [6]) A graph G with 3∆(G) ≥ |V (G)| contains at most
three different ∆(G)-overfull subgraphs. If G meets 2∆(G) ≥ |V (G)|, then G contains
at most one ∆(G)-overfull subgraph.

For graphs of even order with sufficiently high minimum degree, Plantholt [8] was
able to give the following structural result concerning overfull subgraphs.

Lemma 1.3 (Plantholt [8]) Let G be a graph with even order n and minimum degree
δ(G) > n

2
. If S ⊆ V (G), with |S| odd, induces a ∆(G)-full or ∆(G)-overfull subgraph

in G, then S = V (G) − x for a vertex x ∈ V (G).

The equivalent for graphs with odd order is the following lemma.

Lemma 1.4 Let G be a graph with odd order n ≥ 5 and minimum degree δ(G) ≥
n+1

2
. If S ⊆ V (G), with |S| odd, induces a ∆(G)-full or ∆(G)-overfull subgraph in

G, then S = V (G).

Proof. Assume that S ⊆ V (G), with |S| ≤ n − 2 odd, induces a ∆(G)-full or
∆(G)-overfull subgraph in G. Then

∆(G[S]) ≤ ∆(G) ≤ 2|E(G[S])|
|S| − 1

≤ ∆(G[S])|S|
|S| − 1

≤ ∆(G[S]) + 1.
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It follows that |S| ≥ ∆(G) ≥ δ(G) ≥ n+1
2

and for the complement SC of S we get
2 ≤ |SC | ≤ n−1

2
. Let us take a look at the number of edges leading from S to SC .

On the one hand we have

eG(S, SC) ≤ ∆(G)|S| − ∆(G)(|S| − 1) ≤ |S| = n − |SC |.
On the other hand

eG(S, SC) ≥ δ(G)|SC | − 2|E(G[SC ])| ≥ |SC |n + 3 − 2|SC |
2

.

Combining these two inequalities leads to 0 ≤ |SC |2 − |SC |n+5
2

+ n which gives a
contradiction as the right-hand-side is negative for 2 ≤ |SC | ≤ n−1

2
and n ≥ 5. Thus

our assumption was wrong and the statement follows as |S| is odd. �

Lemma 1.5 Let G be a graph of order n with δ(G) ≥ �n/2�. If G has a ∆(G)-
overfull subgraph or is ∆(G)-overfull, then the following hold:

• if n is even, then τδ = 1;

• if n is odd, then τ∆ > n − δ.

Proof. The first statement is an immediate consequence of Lemma 1.3, Theorem 1.2
and the definition of a ∆(G)-overfull subgraph if n is even. In the other case G is
∆(G)-overfull by Lemma 1.4. Assume that τ∆ ≤ n − δ. Add a vertex x to G and
connect x to δ vertices of degree < ∆ such that at least one vertex of degree δ, which
we denote with y, is not connected to x. The resulting graph G′ has maximum de-
gree ∆(G′) = ∆(G), minimum degree δ(G′) = δ(G) and even order n + 1. As G is a
∆(G)-overfull subgraph of G′, the existence of y and x with dG′(y) = dG′(x) = δ(G′)
contradicts the first case of this corollary. �

The Overfull Conjecture has only been validated in very restricted cases so far,
with the following results of Plantholt [8] being among the most recent ones.

Theorem 1.6 (Plantholt [8]) Let c∗ ≥ 3
4

be a real number such that any regular
graph with even order n and degree at least nc∗ is 1-factorable. Let G be a graph with
even order n, maximum degree ∆ and minimum degree δ. If 3δ −∆ ≥ 2c∗n, then G
is Class 2 if and only if G contains a ∆(G)-overfull subgraph.

Corollary 1.7 (Plantholt [8]) Let G be a graph with even order n such that δ(G) +
1 ≥ (

√
7/3)n. Then G is Class 2 if and only if G contains a ∆(G)-overfull subgraph.

The object of our work is to provide analogous results for graphs with odd order.
We will show that the Overfull Conjecture holds true if the graph is almost-regular or
if it has at most two vertices of sufficiently low degree ≤ ∆− 2. Furthermore we will
show that the Overfull Conjecture holds true if the number of vertices of minimum
degree is large enough. We will, however, not be able to show an equivalent result
to Theorem 1.6. This is due to the fact that the proof of Theorem 1.6 relies on a
deep result of Seymour [9] which only holds for graphs with even order, and does not
extend to odd order.
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2 Graphs with odd order

Analogously to Theorem 1.6, let c∗ ≥ 3
4

denote a real number such that any regular
graph with even order n and degree at least nc∗ is 1-factorable. We call a graph
G degree-bounded if it has maximum degree ∆ and minimum degree δ such that
3δ−∆ ≥ 2c∗|V (G)|. With Lemma 1.4 we know that a degree-bounded graph G with
odd order has a ∆(G)-overfull subgraph if and only if G is ∆(G)-overfull. This fact
will be used from now on without further reference to Lemma 1.4.

It is obvious that a ∆-regular graph of odd order n is ∆(G)-overfull and thus
Class 2, fulfilling the Overfull Conjecture. The next theorem shows that the Overfull
Conjecture also holds true in the almost-regular case, meaning δ = ∆ − 1, if the
graph is degree-bounded.

Theorem 2.1 Let G be a graph with odd order n, maximum degree ∆ and minimum
degree δ such that δ = ∆ − 1. If G is degree-bounded, then G is Class 2 if and only
if G is ∆(G)-overfull.

Proof. First suppose that G is ∆(G)-full. Then the following holds

2e(G) = τ∆∆ + (n − τ∆)(∆ − 1) = ∆(n − 1).

Hence ∆(G) = n − τ∆ = τδ. Add a vertex v0 to G and connect it to all vertices of
minimum degree in G, thus constructing a new graph G′. It is easy to verify that G′

is a ∆(G)-regular graph with even order n(G′) = 3δ(G′)−∆(G′)
2

≥ c∗n. It follows that
∆(G′) ≥ c∗(n + 1) and Theorem 1.6 is applicable to G′, telling us that G′ is Class 1.
Since ∆(G′) = ∆(G), we know that G is Class 1, too.
Now suppose that G is neither ∆(G)-full nor ∆(G)-overfull. If τδ = 1, then G would
be ∆(G)-overfull, in contradiction to our assumption. If τδ = 2, it follows that ∆ < 2,
as G is not ∆(G)-overfull. Thus δ = 0, contradicting δ > 0. It remains the case that
τδ ≥ 3. Let H be the subgraph of G induced by the vertices of minimum degree δ.
We are going to show that H is not complete, if G is not ∆(G)-overfull. Assume that
the opposite holds. Then we have 2e(H) = τδ(τδ − 1). Let us consider the edge-cut
(V (H), V (H)c). Then

eG(V (H), V (H)c) = τδδ − 2e(H) = τδ(∆ − 1) − 2e(H) = τδ(∆ − τδ). (1)

As G is neither ∆(G)-full nor ∆(G)-overfull we know that 2e(G) = τ∆∆ + (n −
τ∆)(∆ − 1) < ∆(n − 1). Since τδ = n − τ∆, it follows that ∆ − τδ < 0 yielding a
contradiction in (1). As a consequence, H is not complete. Thus we can add an
edge in H, giving us the graph G1. Note that G1 cannot be ∆(G1)-overfull, as G
was neither ∆(G)-full nor ∆(G)-overfull. However, G1 may be ∆(G1)-full. Using
the same argument for G1 as for G, we can recursively add i edges to G until Gi is
∆(G)-full. But then the first part of the proof applies to Gi, giving us that Gi is
Class 1. As a consequence, G is also Class 1. �
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The following result on graphs with at most one vertex of degree ≤ ∆(G) − 2
shows that under the condition of the degree-boundedness, the Overfull Conjecture
again holds.

Theorem 2.2 Let G be a graph of odd order n with at most one vertex x of degree
≤ ∆(G) − 2. If G is degree-bounded, then G is Class 2 if and only if G is ∆(G)-
overfull.

Proof. If G does not have a vertex with degree less than or equal to ∆(G) − 2, then
G is regular or almost regular and the statement follows directly or from Theorem
2.1. Otherwise let x be the vertex with d(x, G) ≤ ∆(G) − 2. Then δ(G) = d(x, G).
As we only need to show the sufficiency of the statement, suppose that G is not
∆(G)-overfull. The proof will be by induction over k := ∆(G) − δ(G). Since G
is degree-bounded, we have δ(G) ≥ n+1

2
. By the classical result of Dirac [3] we

can find a perfect matching M in G − x. We delete the edges of M in G and
denote the resulting graph by G′. For G′ we have ∆(G′) − δ(G′) = k − 1 and
2|E(G′)| = 2|E(G)| − 2|M | = 2|E(G)| − (n − 1). As G is not ∆(G)-overfull, it
follows that 2|E(G′)| ≤ (n − 1)∆(G) − (n − 1) = |V (G′)|∆(G′). Hence G′ is not
∆(G′)-overfull.
If k = 2, then G′ is almost-regular and Theorem 2.1 yields that G′ is Class 1. Then
G is Class 1, since we can colour the edges of M with an extra colour. If k ≥ 3,
then G′ is Class 1 by induction. Again it follows that G is also Class 1, proving our
theorem. �

In the case that G has more than one vertex of minimum degree the methods
of Theorem 2.1 and Theorem 2.2 are not applicable. However, if G has exactly two
vertices of degree ≤ ∆ − 2, we can prove the following result.

Theorem 2.3 Let G be a graph of odd order n which is degree-bounded such that
there exist exactly two vertices x, y with d(x, G) < d(y, G) < ∆(G) − 1. If d(y, G) =
∆(G)− p and d(x, G) = ∆(G)− q with q ≥ 2p− 1, then: G is Class 2 if and only if
G is ∆(G)-overfull.

Proof. Since G is Class 2 if G is ∆(G)-overfull, suppose that G is not ∆(G)-overfull.
We want to show that G is Class 1. Let x and y be as in the assumption. As
G is degree-bounded it holds that 2δ(G) > 3δ(G) − ∆(G) ≥ 2c∗n ≥ 3

2
n and thus

δ(G) = d(x, G) = ∆(G) − q > 3
4
n. As n > ∆(G), it holds that q ≤ 1

4
n.

Let G1 := G. If the graph Gl is given and has two vertices of degree ≤ ∆(Gl) − 2,
then proceed as follows. In the case that l ≡ 1, 2 (mod 3), delete a perfect matching
of Gl − x in Gl to get to Gl+1. If l ≡ 0 (mod 3), then delete a perfect matching of
Gl − y in Gl to get to Gl+1. We will show later that these matchings exist. When
does this procedure terminate? For l = 3(p − 1),

• ∆(Gl) = ∆(G) − 3p + 3,

• d(y, Gl) = ∆(G) − p − �2l
3
� = ∆(G) − 3p + 2 and

• d(x, Gl) = ∆(G) − q − 
 l
3
� ≤ ∆(G) − 3p + 2.
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Thus the graph Gl, with l = 3(p− 1), has at most one vertex of degree ≤ ∆(Gl)− 2
and the procedure terminates (we leave it to the reader to show that the procedure
does not terminate for any l < 3(p − 1)). As G was not overfull,

2|E(Gl)| = 2|E(G)| − l(n − 1) ≤ (n − 1)∆(G) − 3(p − 1)(n − 1) = (n − 1)∆(Gl),

and Gl is not overfull. Furthermore, for l = 3(p − 1) we have

3δ(Gl) − ∆(Gl) = 3(∆(G) − q − 
 l

3
�) − (∆(G) − l) ≥ 3(∆ − q) − ∆ ≥ c∗n.

Thus by Theorem 2.2 we know that Gl is Class 1. Due to the construction of Gl it
follows that G is Class 1, too.
It remains to show that the perfect matchings in Gl − x and Gl − y exist as long as
l < 3(p − 1). If l < 3(p − 1) we have in Gl

• δ(Gl − x) = d(y, Gl − x) ≥ ∆(G) − p − �2l
3
� − 1 and

• δ(Gl − y) = d(x, Gl − y) ≥ ∆(G) − q − 
 l
3
� − 1.

As q ≥ 2p−1, we have min{δ(Gl−x), δ(Gl−y)} ≥ ∆(G)−2q. Since ∆(G)− q ≥ 3
4
n

and q ≤ 1
4
n, as mentioned in the beginning, both Gl − x and Gl − y have a perfect

matching, by Dirac [3]. This completes the proof of the theorem. �

In Lemma 1.5 we showed that a ∆(G)-overfull graph G has at most δ(G) vertices
which do not have maximum degree. In view of the Overfull Conjecture one would
need to show that a graph G of odd order n with τ∆ ≤ n − δ(G) is Class 1. This is
beyond our reach in the general case, but we can show that τδ ≥ δ(G) implies that
the graph is Class 1, if the minimum degree δ is large enough. For our first condition
we need the following theorem.

Theorem 2.4 (Niessen and Volkmann [7]) Let G be a graph of odd order n such
that

δ(G) ≥ n − 1

2
+ τ∆ +

⌊
τ∆∆(G)

n

⌋
.

Then G is Class 2 if and only if G is ∆(G)-overfull.

Theorem 2.5 Let G be a graph of odd order n. If δ(G) ≥ 5
6
n and τδ ≥ δ, then G is

Class 1.

Proof. As τδ ≥ δ we have τ∆ ≤ n − δ and Lemma 1.5 tells us that G is not overfull.
Furthermore it follows that

n − 1

2
+ τ∆ +

⌊
τ∆∆

n

⌋
≤ 4n + ∆ − 1

6
≤ 5

6
n,

and Theorem 2.4 tells us that G is Class 1. �

We can lower the bound 5
6
n of Theorem 2.5 further, in the case that the graph is

degree-bounded.
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Theorem 2.6 Let G be a graph of odd order n which is degree-bounded. If δ(G) < τδ,
then G is Class 1.

Proof. As τδ > δ(G), Lemma 1.5 tells us that G is not ∆(G)-overfull. If ∆(G) ≤
δ(G) + 1 then the statement has been shown to hold true. So let ∆(G) ≥ δ(G) + 2.
Case 1. Let δ(G) < τδ ≤ ∆(G). In this case add a vertex x0 to G and connect it
with all vertices of degree δ. For the resulting graph G′ it holds that ∆(G′) = ∆(G),
d(x0, G

′) = τδ ≤ ∆(G) and δ(G′) = δ(G) + 1. We now have

3δ(G′) − ∆(G′)
2

=
3δ(G) + 3 − ∆(G)

2
≥ c∗n +

3

2
≥ c∗(n + 1)

and it follows that G′ is degree-bounded. Furthermore, G′ does not have a ∆(G′)-
overfull subgraph. Assume that G′ has a ∆(G′)-overfull subgraph; then by Lemma
1.3 it is of the form G′ − x. For every v ∈ V (G′) with d(v, G′) = δ(G′) the graph
G′−v is also a ∆(G′)-overfull subgraph. As τδ > 2, we get a contradiction to Theorem
1.2. Thus G′ meets the criteria of Theorem 1.6 and is Class 1. Consequently, G is
Class 1.
Case 2. Let τδ > ∆(G). If G is ∆(G)-full, then n∆(G) − ∆(G) = 2e(G) ≤
τδδ(G) + (n − τδ)∆(G) and thus 1 ≥ ∆(G)/τδ ≥ ∆(G) − δ(G), in contradiction to
∆ − δ ≥ 2. Thus G is neither ∆(G)-overfull nor ∆(G)-full. Let H be the subgraph
induced by the vertices of minimum degree in G. If H is complete, then

eG(V (H), V (H)c) = δ(G)τδ − τδ(τδ − 1) = τδ(δ(G) − τδ + 1) < 0,

giving us a contradiction. So we find two vertices x, y of minimum degree, which
are not connected. We add the edge xy to G and denote the resulting graph by G1.
Obviously, ∆(G1) = ∆(G) and δ(G1) = δ(G). However, G1 has two less vertices of
minimum degree and is not ∆(G)-overfull, as a short calculation shows. Let τ 1

δ de-
note the number of vertices of minimum degree in G1. If τ 1

δ > ∆(G1), then G1 cannot
be ∆(G1)-full, using the same argument for G1 as for G. Thus we can recursively
add i edges to G in such a way that τ i

δ ≤ ∆(Gi), ∆(Gi) = ∆(G) and δ(Gi) = δ(G).
Note that Gi cannot be ∆(Gi)-overfull. Then we are in Case 1 and know that Gi is
Class 1 and consequently, that G is Class 1. �

In the case τδ < δ, we need a further condition on the minimum degree, besides
the degree-boundedness, for the Overfull Conjecture to hold.

Theorem 2.7 Let G be a graph of odd order n which is degree-bounded such that
τδ < δ. Denote by d the smallest degree in G greater than δ(G). If there exists an

odd integer s such that d − δ(G) ≥ s ≥ 3δ(G)−3τδ+3
3−2c∗ , then: G is Class 2 if and only if

G is ∆(G)-overfull.

Proof. The necessity is clear; let us show the sufficiency. Suppose that G is not
∆(G)-overfull. We will show that then G is Class 1. For the integer s as in the
hypothesis, it holds that s ≥ 3 as otherwise c∗ < 0. Add the complete graph Ks to
G and connect every vertex of Ks with every vertex of minimum degree in G. We
call the resulting graph Gs. This graph has even order n + s and
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• for every v ∈ V (Ks) it holds that d(v, Gs) = τδ + s − 1;

• for every u ∈ V (G) with d(u, G) = δ it holds that d(u, Gs) = δ + s;

• for every vertex x ∈ V (G) with d(x, G) > δ it holds that d(x, Gs) = d(x, G) ≥
δ + s.

As a consequence we get δ(Gs) = τδ + s − 1 and ∆(Gs) = ∆(G). We are now going
to show that the graph Gs is degree-bounded. Now

3δ(Gs) − ∆(Gs)

2
=

3(τδ + s − 1) − ∆(G)

2

≥ 3

2
(τδ + s − 1 − δ) + c∗n,

as G is degree-bounded. With the choice of s we get 3
2
(τδ + s − 1 − δ) ≥ c∗s and it

follows that
3δ(Gs) − ∆(Gs)

2
≥ c∗(n + s) = c∗n(Gs).

Thus Gs is degree-bounded. Furthermore, Gs cannot have a ∆(Gs)-overfull sub-
graph. Assume that the opposite holds. With Lemma 1.3 this subgraph is of the
form Gs−x0. But then Gs−x is a ∆(Gs)-overfull subgraph of Gs for every x ∈ V (Ks).
Since s ≥ 3, we get a contradiction to Theorem 1.2. Thus Gs does not have a ∆(Gs)-
overfull subgraph and we can apply Theorem 1.6. Hence Gs is Class 1 and, as
∆(Gs) = ∆(G), the graph G is Class 1, too. �
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