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Abstract

For an ordered set W = {wy,wy, -, wi} of vertices and a vertex v in
a connected graph G, the representation of v with respect to W is the
k-vector r(v|W) = (d(v,wy), d(v,ws), - -, d(v,wy)), where d(z,y) repre-
sents the distance between the vertices x and y. The set W' is a connected
resolving set for G if distinct vertices of G' have distinct representations
with respect to W and the subgraph (W) induced by W is a nontriv-
ial connected subgraph of G. The minimum cardinality of a connected
resolving set in a graph G is its connected resolving number cr(G). A
connected resolving set in G of cardinality cr(G) is called a cr-set of G.
An upper bound for the connected resolving number of a connected graph
that is not a path is presented. We study how the connected resolving
number of a connected graph is affected by adding a vertex to the graph.
It is shown that for every integer k > 2, there exists a connected graph
with a unique cr-set. Moreover, for every pair k, r of integers with & > 2
and 0 < r < k, there exists a connected graph G with connected resolving
number £ such that there are exactly r vertices in GG that belong to every
cr-set of G.

1 Introduction

The distance d(u, v) between two vertices u and v in a connected graph G is the length
of a shortest u — v path in G. For an ordered set W = {wq, ws, -+, wr} C V(G) and

a vertex v of G, we refer to the k-vector

r(v|W) = (d(v,w), d(v,ws), - -+, d(v, wy))

as the (metric) representation of v with respect to W. The set W is called a resolving
set for G if distinct vertices have distinct representations with respect to W. A
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resolving set for G containing a minimum number of vertices is a minimum resolving
set or a basis for G. The (metric) dimension dim(G) is the number of vertices in
a basis for G. For a nontrivial connected graph G, its vertex set V(G) is always
a resolving set. Moreover, (V(G)) = G is a nontrivial connected graph. In [11] a
resolving set W of G is defined to be connected if the subgraph (W) induced by W
is a nontrivial connected subgraph of G. The minimum cardinality of a connected
resolving set W in a graph G is the connected resolving number cr(G). A connected
resolving set of cardinality ¢r(G) is called a cr-set of G. To illustrate this concept,
consider the graph G of Figure 1.

w Y

Figure 1: A graph G with dim(G) = 2 and ¢r(G) =3

The set W = {u, v} is a basis for G and so dim(G) = 2. Since ({u, v}) is disconnected,
W is not a connected resolving set. On the other hand, the set W’ = {u, v, z} is a
connected resolving set. Since G contains no 2-element connected resolving set, it
follows that cr(G) = 3.

The concepts of resolving set and minimum resolving set have previously ap-
peared in the literature. In [9] and later in [10], Slater introduced these ideas and
used locating set for what we have called resolving set. He referred to the cardinality
of a minimum resolving set in a graph G as its location number. Slater described
the usefulness of these ideas when working with U.S. sonar and coast guard Loran
(Long range aids to navigation) stations. Harary and Melter [6] discovered these con-
cepts independently as well but used the term metric dimension rather than location
number, the terminology that we have adopted. These concepts were rediscovered by
Johnson [7] of the Pharmacia Company while attempting to develop a capability of
large datasets of chemical graphs. A basic problem in chemistry is to provide math-
ematical representations for a set of chemical compounds in a way that gives distinct
representations to distinct compounds. The structure of a chemical compound can
be represented by a labeled graph whose vertex and edge labels specify the atom
and bond types, respectively. Thus, a graph-theoretic interpretation of this problem
is to provide representations for the vertices of a graph in such a way that distinct
vertices have distinct representations. This is the subject of the papers [1, 2, 4, 8]. It
was noted in [5, p.204] that determining the dimension of a graph is an NP-complete
problem.

In many instances, the vertices in a minimum resolving set in a graph are lo-
cated at significant distances from one another. For graphs representing networks,
a resolving set represents a set of detecting devices in a network so that for every
station in the network, there are two detecting devices whose distances from the sta-
tion are distinct. Since it is important that the devices be properly maintained and
have easy access to one another, it is convenient if these devices are located in close
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proximity to one another. For this reason, we are led to investigate resolving sets W
whose induced subgraph (W) is connected and to the connected resolving number,
first introduced and studied in [11]. We refer to [3] for graph theory notation and
terminology not described here.

Certainly, every connected resolving set is a resolving set. Thus it was noted in
[11] that if G is a connected graph of order n > 3, then

1 <dim(G) < er(G) <n-—1.

Also, dim(G) = ¢r(G) if and only if G contains a connected basis. Two vertices u and
v of a connected graph G is defined in [11] to be distance similar if d(u,x) = d(v, )
for all z € V(G)—{u,v}. Certainly, distance similarity in a graph G is an equivalence
relation in V(G). The following observation [11] is useful.

Observation 1.1  Let G be a connected graph and let Vi, Vo, -+ Vi be the k (k >
1) distinct distance-similar equivalence classes of V(G). If W be a resolving set of
G, then W contains at least |V;| — 1 vertices from each equivalence class V; for all i
with 1 <i <k and so cr(G) > dim(G) > n — k.

2 An upper bound for the connected resolving number of a
graph

Observe that if W is a resolving set of a connected graph G and W C W', then W' is
also a resolving set of G. Therefore, if W is a basis of G such that (W) is disconnected,
then surely there is a smallest superset W’ of W for which (W) is connected. In fact,
if H is a nontrivial connected subgraph of G such that W C V(H), then V(H) is a
connected resolving set of G. This observation suggests an upper bound for cr(G).
First, we need some additional definitions. For a set S of vertices in a connected
graph G, the Steiner distance d(S) of S is the minimum size of a connected subgraph
in G containing all vertices of S. Necessarily, each such subgraph is a tree and is
called a Steiner tree with respect to S or a Steiner S-tree. A basis W of G is called
a Steiner basis of G if

d(W) = min{d(W') : W' is a basis of G}.

It was shown in [2] that the path of order n > 2 is the only connected graph of order
n with dimension 1. Thus for a connected graph G that is not a path, if W is a
Steiner basis of G and T is a Steiner W-tree, then V(T) is a connected resolving set
for G. These observations yield an upper bound for the connected resolving number
of a nontrivial connected graph that is not a path in terms of the Steiner distances
of its bases.

Proposition 2.1  Let G be a nontrivial connected graph that is not a path. If W
s a Steiner basis of G, then

cr(G) <d(W) + 1.
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The upper bound in Proposition 2.1 is sharp. For example, it was shown in
[11] that er(Ky,-1) = n — 1, where K, is a star of order n > 4. On the other
hand, every basis W of K;,_1 contains exactly n — 2 end-vertices of K ,_1 and so
d(W) = n — 2. Therefore, cr(K; ,,—1) = d(W) + 1. Next, we show that cr(G) can be
strictly less than d(W) + 1 for some connected graphs G.

Theorem 2.2  For every pair k, N of integers with k > 5 and N > 0, there ezists
an infinite class of connected graphs G such that cr(G) = k and

cr(G) <d(W)+ (1 —N),
where W is a Steiner basis of G.

Proof. For integers p,q > 3, let G be that graph obtained from two odd cycles
Copt1 and Chyyq by (1) identifying a vertex of Capyq with a vertex of Chyy and
denoting the identified vertex by z and (2) adding the £ — 4 (> 1) new vertices
Y1, Y2, Yk—a and joining each y; (1 <7 < k —4) to . The graph G is shown in
Figure 2.

Up
u/
P
Figure 2: The graph G
First we make an observation. Let U = {uy,ug, -+, up}, U = {uj,u, -+, u},

Vo= v, v, 0.), Vo= o, vh, o0t and Y= {yn,ye, o, yka). IE S s a
resolving set of G, then S contains at one vertex from each of UUU’ and V UV’. For
otherwise, if S C UUU'UY U{z}, then r(vy | S) =r(vy | S). It S CVUV'UY U{x},
then r(u; | S) = r(u} | S). In either case, S is not a resolving set, which is a
contradiction. Moreover, by Observation 1.1, every resolving set of G contains at
least k — 5 (> 0) vertices from Y.

We now determine the dimension of G and all its bases. Let Y’ be any subset of
Y with |Y'| =k — 5 and let

Wi = {up, v, } UY', Wo = {u,,v,} UY’,
Wy = {up, v, } UY', Wy = {u, v} UY".

P’ 7q

Since each W; (1 < i < 4) is a basis for G, it follows that dim(G) = k — 3. In what
follows, we consider two bases of G are equal if they contain exactly same vertices
from V(G) — Y. We show next that every basis of G is one of W, for 1 < i < 4
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Assume, to the contrary, that G contains a basis W distinct from all W; (1 <1 < 4).
By the observation above, W contains exactly one vertex from each of U U U’ and
VUV’ and exactly k—5 vertices from Y. Thus we may assume that W = {s,t}UY",
where s e UUU', t e VUV and Y =Y — {y;}. We consider two cases.

Case 1. s = u, or s = u,. Assume, without loss of generality, that s = wu,.
Since W # W, for 1 <4 < 4, it follows that ¢ = v; ort:vg. for1<j<qg-—1. 1If
t=v; for 1 <j < q—1, then d(v,t) = d(y1,t). Since d(v}, s) = d(v, s), it follows
that r(vy | W) = r(y1 | W), a contradiction. If t = v} for 1 < j < g — 1, then
d(v1,t) = d(y1,t). Since d(vi, s) = d(vn, s), it follows that r(vy | W) =r(y; | W), a
contradiction.

Case 2. s =u; or s =u,, wherel < i <p—1. Assume, without loss of generality,
that s = u,; for some ¢ with 1 <4 < p—1. Then t = v; ort:v§ for 1 <j <gq.
However, in either case, r(u} | W) = r(y; | W), which is a contradiction.

Therefore, W is not a basis of G and so every basis of G is one of W; (1 <i < 4).

Next we show that er(G) = k. Since Sy = {ug,uf,v1,v), 2} U (Y — {y1}) is a
connected resolving set, cr(G) < |Sp| = k. Assume, to the contrary, that cr(G) <
k — 1. Since W; (1 < i < 4) are the only bases of G and none of W; (1 < i < 4) are
connected, G contains no connected basis. Thus ¢r(G) > dim(G) + 1 = k — 2. Let
S be a cr-set of G. Then |S| =k —2or |[S| =k — 1. Since S is a resolving set, S
contains at least k& — 5 vertices from Y. So we may assume that Y/ =Y — {y;} is a
subset of S. We consider two cases.

Case 1. |S| = k—2. By the observation above, S contains at least one vertex from
each of VUV’ and U UU’. This implies that « € S and so S C N[z], where N[z] =
{ur, vy, v1,v}, 2} UY be the closed neighborhood of z. Since (N[z]) = Kjj and
cr(Ky ) = k, it follows that S is not a connected resolving set of G, a contradiction.

Case 2. |S| = k—1. Again, S contains at least one vertex from each of VUV’ and
UuUU’. Thus an argument similar to the one used in Case 1 shows that if S C N|[z],
then S is not a connected resolving set for G. So S ¢ N[z]. Since |S| =k — 1
and S is connected, S must contain z and exactly one vertex from each of {uq,u]},
{v1,v1}, and {us, ub, ve,vh}. Thus we may assume, without loss of generality, that
S = {ug,u1,,v1} UY’ for some subset Y’ of Y with |Y'| = k — 5. However, then
r(uj | S) =r(v] | S), which is a contradiction.

Therefore, er(G) = k. Since each basis of G is one of W; (1 < ¢ < 4) and
d(W;) = (k=5)+p+q=k+p+q—5, it follows that every basis W of G is a Steiner
basis of G with d(W) = k 4+ p + ¢ — 5. For each positive integer N, choose integers
p and ¢ such that p,q > 3 and p+ ¢ > 4 + N. Therefore, cr(G) < d(W)+ (1 — N)
for every basis W of G. (]
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3 On connected resolving numbers of graphs with an added
vertex

A fundamental question in graph theory concerns how the value of a parameter is
affected by making a small change in the graph. In this section, we consider how
the connected resolving number of a connected graph G is affected by the addition
of a single vertex (and, of course, at least one edge incident with this vertex). It was
shown in [1] that if G’ is a graph obtained by adding a pendant edge to a nontrivial
connected graph G, then

dim(G) < dim(G') < dim(G) + 1.

Thus if a pendant edge is added to a graph G, then the dimension of the resulting
graph either stays the same or increases by at most one. However, if a pendant edge
is added to a graph G, then the connected resolving number of the resulting graph
can increase significantly. To show this, we need some additional definitions. For a
set W of vertices of a graph G and a vertex v of G, the distance between v and W is
defined as
d(v,W) = min{d(v,u) : uve W}.

Thus d(v, W) = 0 if and only if v € W. The distance between v and the cr-sets of G
is defined as

der(v) = min{d(v, W) : W is a cr-set of G}.
Certainly, d..(v) = 0 if and only if v belongs to some cr-set of G.

Theorem 3.1  If G’ is the graph obtained by adding a pendant edge to a nontrivial
connected graph G at a verter v, then

er(G) < er(G) < er(G) + 1+ de(v).

Proof. Suppose that G’ is obtained from G by adding a pendant edge vz, where
v € V(G) and z ¢ V(G). We first show that cr(G) < cr(G’). Let W be a cr-set of
G’. We consider two cases.

Case 1. x ¢ W. Then W C V(G) and so (W) is a connected subgraph in G.
Since dg(u,w) = de(u,w) for all u € V(G) and w € W, it follows that W is a
resolving set of G and so W is a connected resolving set of G. Thus cr(G) < |W| =
er(G).

Case 2. x € W. Since (W) is a connected subgraph in G, it follows that v € W.
Let Wy = W — {z}. Certainly, (W;) is a connected subgraph in G since z is an
end-vertex of G'. Next we show that 1] is a resolving set of G. Assume, to the
contrary, that r(s|Wi) = r(¢|W7) for some s,t € V(G). Then d(s, w) = d(¢,w) for all
w € Wy and so d(s,v) = d(t,v). Since d(s,z) = d(s,v) + 1 and d(t,z) = d(t,v) + 1,
it follows that d(s,z) = d(¢,z). This implies that r(s|W) = r(¢|W) in G’, which is a
contradiction. Therefore, W is a resolving set of G and so

cr(G) <|Wi|=|W|=1=cer(G') =1 < cer(G).
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Next we show that ¢r(G") < er(G) + 1+ d.(v). Let W be a cr-set of G such
that d(v, W) = de-(v). So there exists wy € W with d(wg,v) = d(v). Let P :
Wy = Vo, V1, , V4, () = U be a wy — v path of length d..(v) in G'. Since W' =
W uU{z} UV(P) is a connected resolving set of G’, it follows that

(G < W =W+ 14 de(v) = cr(G) + 1+ der(v),

as desired. n
The upper and lower bounds in Theorem 3.1 are both sharp. For example, for
integers k,n > 2, let G be the graph obtained from the path P, : uy, us, -+, u, by
adding the k new vertices vy, v, -+, v, and joining each v; (1 < i < k) to vy. Let
G’ be the graph obtained from G by adding a pendant edge u,x and let G” be the
graph obtained from G by adding a pendant edge u,,_yz. The graphs G, G’ and G”
are shown in Figure 3. Let V = {v1,vq,---,v}. There are k + 1 cr-sets in G, that
is, Wy = {u1,v1,ve, -+, v} and W; = {ug,us} U (V — {v;}) for 1 < i < k. Thus
cr(G) = k+1. Since each W is also a cr-set in G, it follows that cr(G') = k+1. Since
Wo, Wh, -+, Wy, are all er-sets in G, it follows that de(tn—1) = d(up_1,u2) =n —3
and so cr(G") < r(G) + 1+ de(un—1) = k+n — 1 by Theorem 3.1. On the
other hand, the set W = {v1,v9," -, Up_1,u1, U2, ,up_1, 2} is a cr-set of G” and
socr(GN)=W|=k+n—1=cr(G)+ 1+ der(un_1).

Up—1 Uy

G
Up—1 Un

C , [P — 0
G" - . j
(@]

Uk

Figure 3: Graphs G, G', and G”

If a vertex v is added to a connected graph G such that more than one edge is
incident with v, then the connected resolving number of the resulting graph can stay
the same, decrease significantly, or increase significantly. We know that er(K,) =
n — 1. However, if we add a new vertex to K, and join it to all vertices of K,, except
one, the resulting graph still has connected resolving number n — 1. Hence a new
vertex may be added to a graph along with a large number of edges and not increase
the connected resolving number.
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If a vertex v is added to a connected graph G such that more than one edge is
incident with v, then the dimension of the resulting graph can actually decrease by
one. For example, consider the graphs G and G in Figure 4. The dimension of G is
3, where W = {u, z,y} is a basis for G. The graph G; is obtained from G by adding
the vertex v and three edges uv,wv, and zv to G. Since Wy = {u,v} is a resolving
set of G; and so dim(G1) = 2. On the other hand, we are unaware of any graph
G with the property that if a vertex v is added to G such that more than one edge
is incident with v, then the dimension of the resulting graph can decrease by more
than one.

Figure 4: Graphs G and Gy

However, if a vertex v is added to a connected graph G such that more than one
edge is incident with v, then the resolving connected number of the resulting graph
can actually decrease significantly, as we show next.

Proposition 3.2  For each positive integer N, there exist connected graphs G and
Gy such that Gy is obtained from G by adding a vertex with more than one edge
incident with v and

er(Gr) < er(G) — N.

Proof. Let G be the graph obtained from the path P, : v, vs,- -+, vs,, Where
n > 3, by adding the four new vertices x;,y; for i = 1,2 and the new edges x;vy,
Y;va, for ¢ = 1,2, The graph G is shown in Figure 5. By Observation 1.1, every
cr-set of G contains at least one vertex from each of {x1,z5} and {y1,y2}. This
implies that the set V(Pa,) belongs to every cr-set of G and so cr(G) > 2n + 2.
Since S = V(Py,) U{z1,11} is a connected resolving set, cr(G) < |S| = 2n + 2.
Hence cr(G) = 2n + 2. Now let G be the graph obtained from G by adding a new
vertex u and the four new edges uv; for ¢ € {1,2,2n — 1,2n}. The graph G; is also
shown in Figure 5.

By Observation 1.1, every cr-set of (G; contains at least one vertex from each
of {x1,22} and {y1,y»}. Thus, any connected subgraph of G; containing a cr-set
of Gi must have order at least 5. This implies that ¢r(G;) > 5. On the other
hand, {u, v1, von, 21,31} is a connected resolving set of Gy and so ¢r(G1) = 5. Thus
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Figure 5: Graphs G and G,

cr(G)—cr(Gy) = 2n—3. If we choose n such that n > [243], then the result follows.
m
Finally, we show that if a vertex v is added to a connected graph G such that
more than one edge is incident with v, then the connected resolving number of the
resulting graph can increase significantly. For example, let H be the graph obtained
from the path P, : vy, vy, -+, v,, where n > 3, by adding the two new vertices x,y
and let H; is the graph obtained from H by adding a new vertex v such that v
is adjacent to v,—; and v,. The graphs H and H; are shown in Figure 6. Since
{z,v1,v2} is a cr-set of H and {x,v1,vq, -, v, } is a cr-set of Hy, we have cr(H) =3
and cr(Hy) =n+ 1.

T V1 Uy U3 Up—1 Un
H:

Y

x

U1 U2 U3 Un—1 Un

H : e

Yy

v

Figure 6: Graphs H and H,

As another example, we consider the connected resolving number of the wheel
W, = C, + Ky for n > 3, that is, W,, is obtained from the cycle C,, of order n
by adding a new vertex and joining this new vertex to every vertex of C,. In [1],
it was shown that dim(C,) = 2 and dim((W,) = !%J if n > 7, implying that
the dimension of of the wheel W, increases with n for n > 7. This is also true for
the connected resolving numbers of C,, and W,, for n > 7. For n > 3, cr(C,) = 2.
Clearly, cr(Ws) = 3, cr(Wy) = er(Ws) = 2, and er(Ws) = 3. However, for n > 7,
the connected resolving number of W,, increases with n, as we now show.
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Theorem 3.3 Forn >7,

2n 4+ 2

er(W,) = { J + 1.
Proof. In W, =C, + K3, let C, : v1,09, -+, v,,v1, where n > 7, and let v be the
central vertex. Since d(v,v;) = 1 for all 4 with 1 < i < n, it follows that v does not
belong to any basis of W,,. Let W be a basis of W,,. Then W U {v} is a connected
resolving set and so cr(W,) < |W|+1= L%J + 1.

Next we show that cr(W,,) > {%J +1. Assume, to the contrary, that cr(W,,) <

242\ Let W be a connected resolving set of W, with |[W| = {%J Since
|W| = dim(W,,), it follows that W is a basis of W, and so v ¢ . On the other hand,
(W) is connected in W,, and so (W) is a path of order {@J in C,. Without loss
of generality, assume that (W) : vy, vq, - - SV 22 | Since n — L%J >4 forn > 7,
there exist four consecutive vertices vj, vjt1, vj42, Vj43 of Cp, where 1 < j < n and
addition is performed modulo n, that are not in W. Then r(v;j1|W) = (2,2,---,2)
= r(vj42|W), which is a contradiction. Therefore, cr(W,,) > {%J +1. ]

4 Graphs with a unique cr-set or various cr-sets

In this section we show that for every integer k£ > 2, there exists a graph with a
unique cr-set of cardinality k. For positive integers d and n with d < n, define
f(n,d) as the least positive integer k such that k + d* > n. It was shown [2] that if
G is a connected graph of order n > 2 and diameter d, then dim(G) > f(n,d). Since
cr(G) > dim(G) for every graph G, we have the following.

Lemma 4.1  For a connected graph G of order n > 2 and diameter d,
cr(G) > dim(G) > f(n,d).

We show now that for each integer & > 2, there exists a graph G containing a
unique cr-set of cardinality k. The graph in the following proof is a modification of
the one constructed in [4].

Theorem 4.2 For k > 2, there exists a graph with a unique cr-set of cardinality k.

Proof. Let G = Ky with vertex set U = {ug, uq, -+, ugr_1} and let Gy = K, with
vertex set W = {wg_1, wi_2, -+, wo}. Then the graph G is obtained from G; and G,
by adding edges between U and W as follows. Let each integer j (0 < j < 2% —1) be
expressed in its base 2 (binary) representation. Thus, each such j can be expressed
as a sequence of k coordinates, that is, a k-vector, where the rightmost coordinate
represents the value (either 0 or 1) in the 2° position, the coordinate to its immediate
left is the value in the 2! position, etc. For integers i and 7, with 0 <i <k — 1 and
0 <j<2¥—1, we join w; and u; if and only if the value in the 2! position in the
binary representation of j is 1. For k = 3, the edges joining W and U in the graph
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000 001

Figure 7: The graph G for k = 3

G just constructed are shown in Figure 7. By an argument similar to the one used
in [4], we show next that W is the unique cr-set of G.

We first show that W is a cr-set of G. Since G has diameter 2 and order k + 2%,
it follows by Lemma 4.1 that cr(G) > k. Also, since G has diameter 2, the distance
between every two distinct vertices of G is 1 or 2. We claim that W is a connected
resolving set for G. Since (W) is complete, it suffices to show that W is a resolving
set. To do this we need only show that the vertices of U have distinct representations
with respect to W. The representation for each u; (0 < j < 2% —1) can be expressed
as

r(u;|W) = (2 — ag-1,2 — ag—2,---,2 — ap)

where a,, (0 < m < k—1) is the value in the 2™ position of the binary representation
of j. Since the binary representations ax_jax_s - - -ajag are distinct for the vertices
of U, their representations (2 — ay_1,2 — ag_a,--+,2 — ag) are distinct as well. Hence
W is a resolving set of G and ¢r(G) < k. Thus er(G) = k. Since W is a connected
resolving set and |W| = k, we conclude that W is a cr-set for G, as claimed.

It remains only to show that G has no other cr-set. First, we make an observation.
If U’ a subset of U, then |U’| = k and so |U — U’| = 2¥ — k > 2. Since the distance
between every two distinct vertices of U is 1, there are at least two vertices having
the same representations with respect to U’ and so U’ is not a resolving set. Hence
every cr-set of G contains at least one vertex of W. In what follows, it is now useful
to reorder the set W as W = {wp, w1, -+, wk_1}, namely wy, being in position 0,
w; in position 1, etc. However, in any representation, we continue to refer to 20
positions, 2! positions, etc., listed from the right. Suppose that S = W' U U’, where
W CcwW, U CU, |W|=k—j and |U| = j, where 1 < j < k—1. We now
order the set S by placing each vertex of W’ in the same position it occupied in W
and where the elements of U’ are ordered arbitrarily to occupy the vacant positions
of S. Let w € W — W', where w occupied position ¢ in W. If u € U — U’, then
the representation of w with respect to S has 1 in the 2¢ position. In fact, since
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|[W —W'| =|U'| = j, every vertex u € U — U’ has 1 in each of j specific coordinates
in its representation with respect to S. So there are 27 distinct representations of
the vertices of U — U’, and there exactly 27 vertices of each representation. If j = 1,
then there are two vertices of U — U’ with the same representation with respect to
S. If j > 2, then 2/ — j > 2 and for each of 2°77 distinct representations of the
vertices of U with respect to W', there are at least two vertices of U — U’ with the
same representation with respect to S. This is a contradiction. (]
The result can now be extended to the following.

Theorem 4.3  For every pair v,k of integers with k > 2 and 0 < r < k, there
exists a connected graph G such that cr(G) = k and exactly r vertices of G belong to
every cr-set of G.

Proof. For r = 0, let G = Kj,1. Since every k vertices of G form a cr-set, no
vertex of G belong to every cr-set. Thus ¢r(G) = k and r = 0. For r = 1, let
G = K. Since every cr-set consists of the central vertex v of G and any k — 1
end-vertices of G, it follows that v belongs to every cr-set of G and no other vertex
belongs to every cr-set of G. Hence cr(G) =k and r = 1.

For r = k, the graph G constructed in the proof of Theorem 4.2 has a unique
cr-set W containing k vertices. Thus the k-vertices in W are the only vertices of G
belonging to every cr-set of G. Thus G has the desired properties. For r = k—1 > 2,
take the construction of the graph in the proof of Theorem 4.2 for |W| =k — 1 and
take two copies of uqr_;, say x and y, each of which has the same neighborhood as
ugk_1. Then the resulting graph G has connected resolving number k. Moreover, G
has exactly two cr-sets Wi = WU{z} and W, = WU{y}. Thus the k—1 vertices in W
are the only vertices of G belonging to every cr-set of G. Thusr = k—1=cr(G)—1.

For 2 <r <k — 2, let G be the graph obtained from the path P, : uy, us, -, u,
by adding the k — r + 2 new vertices vy, v, - -+, Vg_r42 and joining (1) each of v; and
vy to u; and (2) each of v;, where 3 < i <k —r+2, to u,. Then ¢r(G) = k. By
observation 1.1, every cr-set of G contains at least one vertex from {vq,v2} and at
least k —r — 1 > 1 vertices from {v3,v4, -+, Uk_rs2}. In order to form a connected
resolving set, the r vertices of P, must belong to every cr-set of G. Moreover, if
v € V(G) — V(P), then v is an end-vertex of G and there is a cr-set of G does not
contain v and so v does not belong to every cr-set of G. Therefore, exactly r vertices
of G belong to every cr-set of G. (]
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