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Abstract

The definition for the domination graph of a tournament states that it
has the same vertices as the tournament with an edge between two ver-
tices if every other vertex is beaten by at least one of them. In this
paper two generalisations of domination graphs are proposed by using
different relaxations of the adjacency definition. The first type is formed
by reducing the number of vertices which must be dominated by a pair
of vertices and the second by increasing the number of steps allowable
for domination. Properties of these new types of domination graphs are
presented with comparison between them where appropriate. In partic-
ular, a full characterisation of both generalisations is given for rotational
tournaments.

1 Introduction

A tournament T = (V, A) is a complete, directed graph, with a vertex set V and
an arc set A. For x, y ∈ V we denote an arc from x to y by (x, y) ∈ A and say x
beats y. For any vertex x, let out(x), the out set of x, denote the set of vertices that
x beats. Similarly, let in(x), the in set of x, denote the set of vertices that beat x.
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A tournament T on n vertices is said to be regular if n is odd and every vertex has
out-degree n−1

2
. Tournaments are well documented in Moon [11], Reid and Beineke

[13], and Reid [14].
Given a tournament T = (V, A), a pair of vertices x and y dominate T (in one

step) if for all vertices z �= x, y either x beats z or y beats z. A pair of such vertices
is called a dominant pair. The domination graph of a tournament T , denoted by
dom(T ), is the graph with vertex set V and edges between those pairs of vertices
which are dominant pairs. Numerically this condition states that xy is an edge
in dom(T ) if and only if |in(x) ∩ in(y)| < 1. Domination graphs of digraphs and
tournaments have been completely characterised in a series of papers (see [2, 3, 4, 5,
6, 7]). For a tournament T , dom(T ) is either a cycle of odd length, with or without
isolated and/or pendant vertices, or a forest of caterpillars.

A vertex in a tournament is called a king if it beats all other vertices in one or
two steps; that is, vertex x is a king if for all y ∈ V , x beats y or x beats a vertex
that beats y. Landau [9] proved that every vertex of maximum out degree in a
tournament is a king; consequently, a tournament may have more than one king. A
vertex which beats all other vertices in one step is called an emperor. A tournament
has exactly one king if and only if that king is an emperor [10].

2 Relaxation of domination conditions

Other interesting types of domination graphs may be obtained by using different,
more relaxed conditions for a dominating pair of vertices. We propose two general-
isations of the standard domination graph of a tournament. The first possibility is
to reduce the number of vertices which must be dominated; the second is to increase
the number of allowable steps for domination. Pertinent definitions and results are
presented in this section.

Let T be a tournament with n vertices. For 1 ≤ k ≤ n − 2, the k-domination
graph of T is a graph with the same vertices as T and an edge between two dis-
tinct vertices if and only if that pair of vertices dominates in one step all of the
other vertices of T with the possible exception of k − 1 vertices. Thus two vertices
x and y in T are adjacent in the k-domination graph provided they are not each
dominated by some common set of k other vertices, that is |in(x) ∩ in(y)| < k. We
denote the k-domination graph of a tournament T by domk(T ). Clearly dom1(T ) ⊆
· · · domk(T ) ⊆ domk+1(T ) · · · ⊆ domn−2(T ) where dom1(T ) = dom(T ).

For the domination graphs described above, domination by a pair of vertices
was required to occur in just one step. Now we allow a domination condition more
equivalent to that of a king, that is, domination by a pair of vertices in one or two
steps. We define a royal pair to be a pair of vertices in a tournament T which together
act as a king. That is, vertices x and y form a royal pair if, for all z ∈ V \{x, y},
either x or y beats z in at most two steps. The royal graph, denoted by roy(T ), is
the graph on the vertices of V with an edge between each pair of vertices which form
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a royal pair. It follows from their respective definitions that dom1(T ) is a subgraph
of roy(T ).

Lemma 1 Let T be a tournament, then roy(T ) is connected.

Proof. Since every pair of vertices containing a king must be a royal pair, and every
tournament must have at least one king, namely every vertex of highest out-degree,
roy(T ) must be connected.

If all the n vertices in a tournament T are kings, then roy(T ) is the complete
graph Kn. Rotational tournaments satisfy this condition. Maurer [10] showed that
the probability of every vertex being a king in a random tournament on n vertices
approaches 1 as n → ∞, and so roy(T ) fails as a good representative of dominating
pairs in this situation.

The structures of roy(T ) and dom2(T ) are strongly related. The next result shows
that, depending on the presence of an emperor, one of these types of domination
graphs is always a subgraph of the other.

Theorem 2 Let T be a tournament.

(i) If T has an emperor, then roy(T ) ⊆ dom2(T ).

(ii) If T has no emperor, then dom2(T ) ⊆ roy(T ).

Proof.

(i) Suppose a vertex z is an emperor in T , then the only edges in roy(T ) are those
in the star graph with centre at z. Since an emperor beats every other vertex
in one step, every edge in roy(T ) is also in dom1(T ).

(ii) Suppose that T has no emperor and x and y are adjacent vertices in dom2(T ).
If xy is also an edge in dom1(T ) then it is an edge in roy(T ). However, if xy
is not an edge in dom1(T ), then there is a vertex w which beats both x and
y. Consequently, if there is an arc from V � {w, x, y} to w, then x and y must
form a royal pair, otherwise w is an emperor.

Kings play a key role in determining when the graphs dom2(T ) and roy(T ) are
the same.

Theorem 3 Let T be a tournament, if dom2(T ) = roy(T ) then every royal pair
contains a king.

Proof. Assume there is a royal pair x and y where y beats x and neither x nor y
is a king. Then there exists a vertex u which prevents x from being a king. This
means u beats x and u beats every vertex in out(x). Similarly, there is a vertex v
which prevents y from being a king. (Note that v �= u, since x and y form a royal
pair.)
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Case 1. Assume u /∈ out(y), then u beats y. Then xy is not an edge in
dom2(T ), since both u and v beat x and y. Thus roy(T ) �= dom2(T ).

Case 2. Assume y beats u, and there is some vertex t �= v which beats both
x and y. Then xy is not an edge in dom2(T ), since both t and v beat x and y.
Thus roy(T ) �= dom2(T ).

Case 3. Assume y beats u, and v is the only vertex which beats both x and
y. Then V = {v, y} ∪ out(x) ∪ out(y).

Let A be the set of all vertices which beat x and all of the vertices in out(x).
Note that u ∈ A, hence A is not empty. Since {x, y} is a royal pair there must
exist some w ∈ out(x) which beats v. Moreover, w beats y, otherwise y would
beat v in two steps (and therefore be a king).
Case 3a. Assume |A| = 1, and so A = {u}. Assume that there is some other
vertex s which prevents {u, x} from being a royal pair. That is, s beats u, s
beats x, and s beats all the vertices in both out(u) and out(x). This means
that s ∈ A, a contradiction. Hence {u, x} is a royal pair. Moreover, since
v and y dominate both of u and x, ux is not an edge in dom2(T ). Thus
roy(T ) �= dom2(T ).
Case 3b. Assume |A| > 1. Then the edge wx is not in dom2(T ), since |A| > 1
and every vertex in A beats both w and x. But wx is an edge in roy(T ), since
w beats y, w beats v, and w beats all vertices in out(y) in at most two steps.
Thus roy(T ) �= dom2(T ).

In each case it has been shown that if T contains a royal pair where neither vertex
is a king, then roy(T ) �= dom2(T ).

A complete characterisation of those tournaments T for which dom2(T ) = roy(T )
is unknown, and the converse of Theorem 3 is not true. The condition that every
royal pair contains a king is not sufficient. This is illustrated in Figure 1 where the
vertices 1, 2, and 6 of the tournament N6 are all kings but roy(T ) and dom2(T ) are
not equal. Figure 1(a) shows N6 drawn in a customary way; only the upward oriented
arcs are shown. The tournament N6 is called the nearly transitive tournament on
6 vertices (see for example [12]). A nearly transitive tournament on n vertices Nn

(n ≥ 3) has vertices {v1, . . . , vn} and domination so that vi beats vj if i < j, except
for the pair {v1, vn}, for which vn beats v1. (If the arc (vn, v1) was reversed, the
tournament would be transitive). It is straightforward to verify the following lemma
concerning the kings of Nn.

Lemma 4 The vertices v1, v2 and vn are the only kings of Nn.

Proposition 5 The tournaments Nn (n ≥ 5) have the following properties:

(i) dom2(Nn) � roy(Nn)

(ii) Every royal pair contains a king.
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Figure 1: The nearly transitive tournament N6, its royal graph and first three k-
domination graphs.

Proof.

(i) Since Nn clearly has no emperor, dom2(Nn) ⊆ roy(Nn) by Theorem 2. It
remains to show that there is an edge in roy(Nn) which is not an edge in
dom2(Nn). Consider the vertices vn−1 and vn. Since vn is a king, the edge
vn−1vn is in roy(Nn). However, since this pair of vertices does not beat either
of the vertices v2 and v3, the edge vn−1vn is not in dom2(Nn).

(ii) Consider any two vertices vi and vj with 3 ≤ i < j ≤ n − 1. Now, since
in(v2) = {v1}, and in(v1) = {vn}, neither of vi and vj can beat v2 in two steps.
Hence, vi, vj is not an edge in roy(Nn).

So the family of tournaments Nn (n ≥ 5) is an infinite family of counterexamples
to the converse of Theorem 3.

We now generalise the definition of an emperor by defining a subk-emperor to be
a vertex which beats all other vertices, except k of them, in one step. That is, a
vertex x ∈ V is a subk-emperor if and only if |in(x)| ≤ k. The next lemma follows
by generalising the proof of Theorem 2.
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Lemma 6 If T is a tournament with no subk-emperor, where k ≥ 1, then domk+2(T )
⊆ roy(T ).

We cannot guarantee that for each tournament T , domi(T ) ⊆ roy(T ) ⊆
domi+1(T ) for some i.

The tournament N6 in Figure 1 is an example of a tournament which has
dom3(T ) �⊆ roy(T ) and roy(T ) �⊆ dom3(T ). The nearly transitive tournaments
Nn (n ≥ 6) are a family of tournaments which show that this containment does not
always hold for arbitrary k.

Theorem 7 For any nearly transitive tournament Nn (n ≥ 6) and any k (3 ≤ k ≤
n − 3), domk(Nn) �⊆ roy(Nn) and roy(Nn) �⊆ domk(Nn).

Proof. Consider the vertices vn−1 and vn. Since vn is a king (Lemma 4), vn−1vn is
an edge in roy(Nn). Since the vertices v2, . . . vn−2 beat both vn−1 and vn, the edge
vn−1vn is not in domk(Nn).

Consider the vertices v3 and v4. Theorem 5(ii) tells us that v3v4 is not an edge in
roy(Nn). Since v3 and v4 together dominate every vertex except v1 and v2, the edge
v3v4 is in domk(Nn).

So domk(Nn) �⊆ roy(Nn) and roy(Nn) �⊆ domk(Nn).

The generalisation of domination graphs to k-domination graphs provides a means
of classifying some pairs of vertices as more dominant within the tournament than
others.

There are a number of interesting, but as yet unanswered, questions concerning
the classification of tournaments which have a particular type of k-domination or
royal graph.

• How can Theorem 3 be extended to a classification of tournaments T which
have dom2(T ) = roy(T )?

• Can a structural classification of 2-domination graphs be found, similar to
domination graphs being odd cycles with possible isolated and pendant vertices
or forests of caterpillars? Can this be extended to k-domination graphs?

• Which tournaments have no kingless royal pairs?

• Which tournaments have empty k-domination graphs?

• Do k-domination graphs always provide a separation of the pairs of vertices,
classifying some pairs as more dominant than others?

Rotational tournaments provide some partial answers to some of these questions and
are a good source of examples. A sampling of these are presented in the next two
sections.
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3 Rotational tournaments

Let S be a subset of Zn\{0} with the property that i ∈ S if and only if n − i ∈ S.
Define a graph G to have a vertex set v1, v2, . . . , vn, with an edge joining vertices vi

and vj if and only if i − j ∈ S. A graph G of this type is called a circulant graph
and the set S is known as its symbol. A rotational tournament T (S) is defined in a
similar fashion with the symbol S again being a subset of Zn\{0} but having slightly
different restrictions, namely that it must contain n−1

2
elements and si + sj �= 0

for all si, sj ∈ S. For such a rotational tournament (vi, vj) is an arc if and only
if j − i = s mod n for some s ∈ S. For example, if {1, 2, 3} is the symbol for a
tournament T on seven vertices, then vertex v1 beats vertices v2, v3 and v4, and is
beaten by vertices v5, v6 and v7 [1].

Rotational tournaments are a subclass of regular tournaments. They are vertex
transitive, that is, for every pair of vertices vi and vj , there is an automorphism which
maps vi to vj. Let S be a symbol for a rotational tournament T with n vertices. It
is routine to show that if r is relatively prime to n, then rS is also a valid symbol
for some tournament. Proposition 8 shows that this tournament will be isomorphic
to T .

Proposition 8 A rotational tournament T on n vertices with symbol S is isomorphic
to any tournament Tr with symbol rS where r is relatively prime to n.

Proof. Suppose S = {s1, . . . , st}, and the vertices of T and Tr are labelled
v1, . . . , vn. The symbol for Tr is {rs1, . . . , rst}. Define a mapping φ from the ver-
tices of T to the vertices of Tr by φ(v�) = vr�. Since r and n are relatively prime,
φ reorders the vertices. It also gives an isomorphism between T and Tr. Suppose
vertex vi beats vertex vj for some 1 ≤ i, j ≤ n in T , then j − i ∈ S. Consequently,
r(j − i) = rj − ri ∈ rS. Hence vri = φ(vi) beats vrj = φ(vj) in Tr. Hence φ is an
isomorphism.

Proposition 8 does not determine all possible symbols for a rotational tournament.
For example, the symbols {1, 3, 4, 7} and {1, 4, 6, 7} form isomorphic tournaments on
nine vertices, but one is not a multiple of the other.

Let T be a tournament on n vertices. The arc reversal of T is defined to be
the tournament with the same vertex set as T but with the direction of each arc
reversed. By Proposition 8 it is clear that a rotational tournament is isomorphic to
its arc reversal.

Let Un, n ≥ 3, be the rotational tournament with symbol {1, 3, . . . , n − 2},
(that is all odd numbers from 1 to n − 2.) Fisher et al. [4] showed that if T is a
rotational tournament on n vertices then either dom1(T ) is the cycle graph Cn and
T is Un or dom1(T ) is the empty graph. A related result is now proved; namely that
each domination graph domk(T ), for k = 1, 2, . . . , n−3

2
, is either the empty graph or a

circulant graph. (Note that for a rotational tournament the out degree of every vertex
is n−1

2
, hence any pair of vertices must beat at least n−1

2
other vertices, consequently

in the definition for domk(T ) it is only necessary to consider k = 1, 2, . . . , n−3
2

.)
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For a rotational tournament T with symbol S on vertices v1, . . . vn, we define the
following for use in the consequent theorems. Let D be the sequence of all possible
differences modulo n between pairs of elements in S. For each element d in D let
N(d) be the number of times the value d occurs in D.

Theorem 9 Let T be a rotational tournament with symbol S and vertices labelled
v1, v2, . . . , vn. Then, for 1 ≤ k ≤ n−3

2
, domk(T ) is either the empty graph or a

circulant graph whose symbol consists of those values d in D for which which N(d) <
k.

Before presenting the proof of Theorem 9 a short example is given. Let T be
the rotational tournament on nine vertices with symbol S = {1, 5, 6, 7}. We form
the difference table for this symbol by calculating the difference between all pairs of
elements in S and counting how many times each difference occurs. The difference
table for this example is:

d 1 2 3 4 5 6 7 8
N(d) 2 1 1 2 2 1 1 2

Since there are no values of d such that N(d) = 0 it follows that dom1(T ) is the empty
graph. There are four values of d such that N(d) ≤ 1, hence dom2(T ) is the circulant
graph with symbol {2, 3, 6, 7}, the set of those differences d with N(d) ≤ 1. Similarly
it follows that dom3(T ) is the circulant graph with symbol {1, 2, 3, 4, 5, 6, 7, 8}; that
is, dom3(T ) is the complete graph K9.

Proof. Since T is vertex transitive it suffices to consider any pair of vertices vi

and vj in T . By counting the number of vertices z = v� which beat both vi and vj

the equality N(i − j) = |in(vi) ∩ in(vj)| is obtained. Indeed, if v� beats vi and vj

then i − � = si mod n and j − � = sj mod n for some si, sj ∈ S, and consequently
i − j = si − sj.

Thus the symbol Sk for domk(T ) consists of the values of those differences d,
from pairs of elements in {1, 2, . . . , n}, for which N(d) < k. It is clear from the
construction that � ∈ Sk if and only if n − � ∈ Sk; consequently this symbol fulfils
the appropriate condition for a circulant graph.

Let U ′
n, n ≥ 7, represent the rotational tournament with symbol {1, 2, 4, . . . ,

n − 3}, namely one and all even numbers except n − 1. It follows from Theorem 9
that dom1(U

′
n) is the empty graph and domn−3

2
(U ′

n) is the complete graph Kn. Fisher

et al. [5] showed that for a tournament with n vertices the maximum possible number
of edges in dom1(T ) is n. It is not surprising that more than n edges may occur in

domk(T ), and in the fact the maximum possible number of edges, namely n(n−1)
2

, is
obtained in domn−3

2
(U ′

n).

Since every vertex in U ′
n is a king it is clear that roy(U ′

n) is complete. However
dom1(U

′
n), n ≥ 7 is empty. This gives a situation where the graphs of dom1(T ) and

roy(T ) are as different as possible. The next section expands the construction of the
symbol of U ′

n to give a family of rotational tournaments where, for each member, the
k-domination graph is empty and the (k + 1)-domination graph is not.
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4 Construction of empty domk

In this section an infinite family of rotational tournaments on n vertices is described,
in which for sufficiently large n, the k-domination graph is empty and the (k + 1)-
domination graph is not empty. Additionally, we show that if T is a quadratic residue
tournament [8] on 4k + 3 vertices, then the domk(T ) is empty and domk+1(T ) is
complete.

Let En,k, k ≥ 1, be a rotational tournament on n vertices with symbol

Sn,k = {1, 2, . . . , 2k − 1, 2k} ∪ {2k + 2, 2k + 4, . . . , n − 2k − 3, n − 2k − 1}.
For example, the symbol for E17,2 is S17,2 = {1, 2, 3, 4, 6, 8, 10, 12}, and the symbol
for E17,3 is S17,3 = {1, 2, 3, 4, 5, 6, 8, 10}. Notice that the symbols for En,1 and U ′

n are
equal.

Theorem 10 The k-domination graph domk(En,k) is empty when n > 8k.

Proof. Let D be the sequence of all possible differences modulo n between pairs
of elements in Sn,k. By Theorem 9 it suffices to show that N(d) ≥ k for all d ∈ D.
Note that it is only necessary to consider 1 ≤ d ≤ n−1

2
, since the difference table is

symmetrical; N(d) = N(n− d). Odd and even values of d are considered separately.
If d is even then each of the k differences in the sequence

(d + 2) − 2, (d + 4) − 4, . . . , (d + 2k) − 2k

has value d and occurs in D provided d + 2k < n − 2k + 1. The condition n > 8k
ensures this inequality holds.

The case for d odd is similar. The required sequence of k differences, each with
value d, is

(d + 1) − 1, (d + 3) − 3, . . . , (d + 2k − 1) − (2k − 1)

and it is clear that d + 2k − 1 < n − 2k + 1.
Hence N(d) ≥ k irrespective of whether d is even or odd, so domk(En,k) is the

empty graph.

Theorem 11 The (k + 1)-domination graph domk+1(En,k) is not empty.

Proof. It suffices to show that there is a value of d such that N(d) < k + 1, for
then there will be edges in domk+1(En,k). Let d = 2k + 1. Since d is odd the only
pairs of elements in Sn,k with difference equal to 2k +1 are given by the k differences

(1 + 2k + 1) − 1, (3 + 2k + 1) − 3, . . . , (2k − 1 + 2k + 1) − (2k − 1)

(None of the even symbol elements between 1 and 2k can be used to form a difference
with value 2k+1 in this fashion, since adding 2k+1 to any of them gives a larger odd
value which isn’t in the symbol.) Thus N(2k + 1) = k < k + 1 giving the required
result.

Theorems 10 and 11 give an example of a family of rotational tournaments, where
for any member T , domk(T ) is empty and the next graph in the chain of domination
graphs, namely domk+1(T ) is not empty. Moreover roy(T ) is complete.
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Conjecture 12 Theorems 10 and 11 hold for the improved condition of n > 6k.

Note that this construction works for E17,2 where n > 8k and fails for E17,3 where
n < 6k. Observations seem to suggest this construction will in fact work when
n > 6k, and fail when n < 6k. A computer check shows that the condition n > 6k
is satisfactory for all constructions of En,k with k < 35.

Finally, we present a family of tournaments for which the k-domination graph is
empty, and the (k + 1)-domination graph is complete. They are rotational tourna-
ments with quadratic residues as the elements of the symbol.

A quadratic residue tournament is a rotational tournament on n = 4k+3 vertices,
where n is prime [8]. The symbol for the quadratic residue tournament on n = 4k+3
vertices is of the form {a2 mod n|1 ≤ a ≤ n}, the quadratic residues mod n.

Theorem 13 If T is a quadratic residue tournament with 4k + 3 vertices, then
N(d) = k for all d.

Proof. Recall from Proposition 8 that every (relatively prime) multiple of a sym-
bol for a tournament yields an isomorphic tournament. When considering quadratic
residues, multiplying the symbol S by a quadratic residue yields exactly the same
symbol S.
It follows that entries for all quadratic residues in the difference table are equal. A
similar argument shows that all non-square entries in the difference table are equal.
It now remains to show that the entries for square and non-square differences are the
same.
Applying Theorem 9, we see that the quadratic residue tournament can also be gen-
erated from the complement of the quadratic residues. Applying this isomorphism
shows the number of entries for square and non-square differences are the same.
Now, since there are 4k + 2 differences in the difference sequence, and 2k(2k + 1)
ordered pairs to form differences from in the symbol, each difference occurs exactly
k times.

It follows from this theorem and the use of difference tables as outlined earlier
that the k-domination graph of a quadratic residue tournament with 4k + 3 vertices
is empty. Moreover, its (k + 1)-domination graph is complete.

This family of quadratic residue tournaments demonstrates that there are an
infinite number of tournaments for which generating a chain of domination graphs
to determine which pairs are ‘more dominant’ cannot always work. For these special
tournaments, the number of edges in the k-domination graphs is either zero or n(n−1)

2
.

5 Conclusion

The formation of domination graphs of tournaments extends to the family of k-
domination graphs. These generalisations of domination graphs give a means of
indicating which pairs of vertices are more dominant in a tournament.

180



The royal graph generalisation of domination graphs give a different means of
measuring which pairs of vertices are more dominant based on the concept of kings.
Royal graphs and 2-domination graphs are closely related.

Examples with rotational tournaments show that k-domination graphs can be
empty for arbitrarily large k, and the family of quadratic residue tournaments shows
that in some special cases, the chain of k-domination graphs give no information
about which pairs of vertices are more dominant.

Further work on these generalisations could include the answering of the open
questions presented at the end of Section 2, and a proof of Conjecture 12.
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