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Abstract

We determine, for all n > 0, the set C(n) = {k: there exists a triangle-free
k-regular graph on n vertices containing a cut vertex}.

1 Introduction

In a recent paper [3] the authors determined all values c(n) = max {k: there exists a
triangle-free k-regular graph on n vertices containing a cut vertex}. We will make use
of the extremal graphs constructed in that paper to determine the complete spectrum
C(n) = {k: there exists a triangle-free k-regular graph on n vertices containing a cut
vertex}.

We refer the reader to [1] for standard definitions and notations. The degree of
a vertex x in the graph G, denoted degG(x), is the number of vertices in G to which
x is adjacent. A graph G is called k-regular if degG(x) = k for all vertices x in G.
A graph G will be called almost k-regular if one vertex (called the special vertex) in
G has degree k − 2 and every other vertex in G has degree k. A k-factor in a graph
G is a subgraph of G each of whose vertices has degree k, while a near-k-factor is a
subgraph of G in which all but one vertex has degree k with the remaining vertex
having degree 0 (i.e. is isolated). Note that an almost 2-regular graph is equivalent
to a near-2-factor.

The following theorem of Petersen is well-known.

Theorem 1.1

Every 2t-regular graph has a 2-factor.

A k-factorization of a graph G is an edge-decomposition of G into k-factors. Thus
the following is an immediate consequence of Theorem 1.1.
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Corollary 1.2 (Petersen)

Every 2t-regular graph has a 2-factorization.

The classification of which k-regular graphs (on an even number of vertices)
have one-factorizations is a very difficult open problem. The well-known One-
Factorization Conjecture, for example, asserts that the largest k for which there
exists a k-regular graph of order 2m without a one-factorization is F (2m) = 2�m−1

2
�;

we refer the reader to [2] for further discussion. In fact, one of the motivations for [3]
was to determine a lower bound on the quantity f(2m), which denotes the largest k
for which a triangle-free k-regular graph of order 2m without a one-factorization ex-
ists. (Note that regular graph with a cut-vertex cannot be one-factorizable, whence
f(2m) ≥ c(2m).) As a consequence of Theorem 1.5 (see ahead) it was determined
that f(2m) ≥ α(2m) = �4

9
(m−1)�+1 if m = 7, 12, 16 or 21, and f(2m) ≥ �4

9
(m−1)�

for all other m ≥ 8. Of course f(2m) is bounded above by the largest k for which
there exists a k-regular graph on 2m vertices with odd girth γ ≥ 5; i.e. f(2m) ≤ 5
if m = 7, f(2m) ≤ 9 if m = 12, and f(2m) ≤ 2�2m

5
� for all other m ≥ 8 (see Shi [4]).

Let t′(n) denote the largest k for which there exists a triangle-free almost k-regular
graph on n vertices. Let S = {8, 11, 14, 15, 18, 21, 24} and define

a(n) =




4 if n = 9,
�2n−4

5
� + 1 if n ∈ S,

�2n−4
5

� − 1 if n ≡ 1 or 5 mod 10 and n /∈ S,
�2n−4

5
� for all other n ≥ 10.

The following result was determined in [3]:

Theorem 1.3

t′(n) = a(n) for all n ≥ 8. Moreover, t′(n) does not exist if n = 1, 2, 3, 4, and
t′(5) = t′(6) = t′(7) = 2.

We will begin by determining, in Section 2, the spectrum T ′(n) = {k: there exists
a triangle-free almost k-regular graph on n vertices}:
Theorem 1.4

(i) For odd n ≥ 5, T ′(n) = {k : k even and 2 ≤ k ≤ t′(n)}.
(ii) For even n ≥ 6, T ′(n) = {k : 2 ≤ k ≤ t′(n)}.

In Section 3, we then use the almost k-regular graphs constructed in Section 2 to
determine the spectrum C(n), using a construction from [3]. Let

α(n) =




�2n−4
9

� + 1 if n ∈ {14, 24, 32, 42},
�2n−4

9
�e + 2 if n ∈ {17, 19, 27, 37},

�2n−4
9

� for all other even n ≥ 16,
�2n−4

9
�e for all other odd n ≥ 21,
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where �x�e denotes the largest even integer not exceeding x. The following is the
main result from [3].

Theorem 1.5

c(n) = α(n) for all n ≥ 16. Moreover, c(14) = α(14) = 3 while c(n) does not
exist if n ≤ 13 or if n = 15.

Corollary 1.6

If G is a connected k-regular triangle-free graph on n vertices with k > 3 when
n = 14, or k > α(n) when n ≥ 16, then G is 2-connected.

Now Theorem 1.5 implies that C(n) = ∅ if n ≤ 13 or if n = 15. In Section 3 we
will obtain the following main result.

Theorem 1.7

(i) For odd n ≥ 17, C(n) = {k : 4 ≤ k ≤ c(n) and k even }.
(ii) For even n ≥ 14, C(n) = {k : 3 ≤ k ≤ c(n)}.

In all of the cases in Theorem 1.4 we will use as a starting point the (extremal)
almost t′(n)-regular graphs from [3], removing one-factors and/or two-factors as
needed. Throughout we rely heavily on Petersen’s Theorem.

2 The spectrum of triangle-free almost k-regular

graphs.

In this section we determine T ′(n) for all n ≥ 5. We first obtain the following
preliminary result.

Theorem 2.1

Let k be an even integer. Then every almost k-regular graph G has a near 2-factor
whose isolated vertex is the special vertex in G.

Proof

Let G be an almost k-regular graph (k ≥ 2) with special vertex x. Let H be
any k-regular graph with V (G) ∩ V (H) = ∅. Let {a, b} be an edge in H. Form a
graph J whose vertex set is V (J) = V (G) ∪ V (H) and whose edge set is E(J) =
((E(G)∪E(H))\{{a, b}})∪{{x, a}, {x, b}}. Then J is a k-regular graph and since k
is even, J has a 2-factorization (Corollary 1.2). Let F be a 2-factor in J containing
the edge {x, a}; then it is clear that F also contains the edge {x, b}, since x is a
cut-vertex in J . Then the restriction of F to the vertices V (G) − {x} is the near
2-factor in G whose isolated vertex is x, as desired.

Theorem 1.4(i) now follows immediately:
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Lemma 2.2

For all odd n ≥ 5, T ′(n) = {k : k even and 2 ≤ k ≤ t′(n)}.
Proof

Let n ≥ 5 be odd and let G be an almost t′(n)-regular triangle-free graph on
n vertices (e.g. from [3]). Let k be even, 2 ≤ k ≤ t′(n). By Theorem 2.1, G has
a near 2-factor F whose isolated vertex is the special vertex in G. Removing the
edges of F from G yields a (t′(n) − 2)-regular graph H on n vertices. Since t′(n) is
even, t′(n) − 2 is even and so H has a 2-factorization (Corollary 1.2). Therefore, we
can remove (t′(n) − k)/2 edge-disjoint 2-factors from H to obtain a (k − 2)-regular
graph H ′, and then replace the edges of F to obtain a graph G′ on n vertices (that
is, V (G′) = V (H ′) and E(G′) = E(H ′) ∪ F ) which is almost k-regular (its special
vertex is the same as that of G) and triangle-free (G′ is a subgraph of G). Hence
k ∈ T ′(n), and the result follows.

Now when n is even, an almost k-regular graph can have k odd (or even). We
summarize our strategy in this case in the following observation.

Lemma 2.3

Let n be an even integer, n ≥ 6, and let G be an almost t′(n)-regular triangle-free
graph on n vertices (e.g. from [3]).

(i) If t′(n) is odd and G contains a one-factor, then T ′(n) = {k : 2 ≤ k ≤ t′(n)}.
(ii) If t′(n) is even and G contains two edge-disjoint one-factors, then T ′(n) = {k :

2 ≤ k ≤ t′(n)}.

Proof

(i) Let F1 be a one-factor in G. By Theorem 2.1, the graph obtained by removing
the edges of F1 from G has a near 2-factor F2 whose isolated vertex is the
special vertex in G. Removing also from G the edges of F2 yields a (t′(n)− 3)-
regular graph H on n vertices. Since t′(n) is odd, t′(n) − 3 is even and so by
Corollary 1.2 H has a 2-factorization. Now remove (t′(n) − k)/2 (if k is odd)
or (t′(n)− k − 1)/2 (if k is even) edge-disjoint 2-factors from H. In the former
case we obtain a (k−3)-regular graph H ′, to which we add the edges of F1∪F2

to yield an almost k-regular triangle-free graph G′ on n vertices, while in the
latter case we obtain a (k− 2)-regular graph H ′′, to which we add the edges of
F2 to yield an almost k-regular triangle-free graph G′′ on n vertices. In either
case we have k ∈ T ′(n), and the result follows.

(ii) Let F1 and F ′
1 be edge-disjoint one-factors in G. By Theorem 2.1, the graph

obtained by removing the edges of F1∪F ′
1 from G has a near 2-factor F2 whose

isolated vertex is the special vertex in G. Removing also from G the edges of F2
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yields a (t′(n)−4)-regular graph H on n vertices which, since t′(n) is even, has
a 2-factorization (Corollary 1.2). We may assume that k < t′(n). Now remove
(t′(n) − k − 2)/2 (if k is even) or (t′(n) − k − 1)/2 (if k is odd) edge-disjoint
2-factors from H. In the former case we obtain a (k − 2)-regular graph H ′, to
which we add the edges of F2 to yield an almost k-regular triangle-free graph
G′ on n vertices, while in the latter case we obtain a (k− 3)-regular graph H ′′,
to which we add the edges of F1 ∪ F2 to yield an almost k-regular triangle-free
graph G′′ on n vertices. Again in either case, we have k ∈ T ′(n), and the result
follows.

Thus we will now proceed to show that for each even integer n > 6 there is an
almost t′(n)-regular triangle-free graph on n vertices which has a one-factor (if t′(n)
is odd) or two edge-disjoint one-factors (if t′(n) is even). In fact we will show that in
each case the almost t′(n)-regular graphs from [3] have this property. (Note that the
case n = 6 is trivial, as clearly T ′(6) = {2}.) To do this we must first reconstruct
from [3] all of the almost t′(n)-regular triangle-free graphs on an even number n > 6
of vertices. For the sake of brevity we will henceforth adopt the notation (k, n)-graph
(from [3]) to denote an almost k-regular triangle-free graph on n vertices.

There are three categories of these graphs:

(C1) n ≡ 0 or 6 mod 10, n ≥ 10.

Let H be the 2m-regular graph of order n shown in Figure 1 of the Appendix.
Select a vertex bi ∈ Bi for i = 0, 1, 2. Let H ′ be the subgraph of H obtained
by deleting the vertices b0 and b2, and let M be a one-factor in H ′. Then the
graph G obtained from H by deleting the set of edges M ∪ {{b0, b1}, {b1, b2}}
is a (t′(n), n)-graph (with special vertex x = b1). Note that in all of these cases
t′(n) is odd.

(C2) n ∈ {8, 14, 18, 24}.
The four (t′(n), n)-graphs are given in Figure 2 of the Appendix. Note that in
all of these cases t′(n) is odd.

(C3) n ≡ 2, 4 or 8 mod 10, n ≥ 12 and n /∈ {14, 18, 24}.
These graphs are given in Figure 3 of the Appendix. Note that in all of these
cases t′(n) is even.

Lemma 2.4

Each of the graphs in categories (C1) and (C2), as defined above, has a one-factor.

Proof

For a one-factor in each graph in category (C2), see Figure 4 of the Appendix.
For n = 10, 16, a one-factor in the (3,10) and (5,16)-graphs is given in Figure 5

of the Appendix. In each case the solid lines indicate the edges in the one-factor,
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while the dotted lines indicate the edges of M ∪{{b0, b1}, {b1, b2}} (see the foregoing
construction for the graphs in this category). For n ≡ 0 mod 10, n ≥ 20, a one-factor
in the (t′(n), n)-graph can be obtained by adjoining 1

10
(n− 10) vertex-disjoint copies

of A to the one-factor in the (3,10)-graph, while for n ≡ 6 mod 10, n ≥ 26, a one-
factor in the (t′(n), n)-graph can be obtained by adjoining 1

10
(n− 16) vertex-disjoint

copies of A to the one-factor in the (5,16)-graph. In the graph A (also in Figure 5),
the solid lines indicate the edges in the one-factor, while the dotted lines indicate
the edges of M .

Lemma 2.5

Each of the graphs in category (C3) has two edge-disjoint one-factors.

Proof

In each case we will construct a 2-factor which is composed of even length cycles.

For n = 12, a 2-factor in the (4,12)-graph is given in Figure 6 of the Appendix.
Now for n ≡ 2 mod 10, n ≥ 22, a 2-factor in the (t′(n), n)-graph can be obtained by
adjoining 1

10
(n − 12) vertex-disjoint copies of B (also in Figure 6) to the 2-factor in

the (4,12)-graph.

For n = 28, a 2-factor in the (10,28)-graph can be obtained by adjoining a copy
of B to the 2-factor in the (non-extremal) (6,18)-graph given in Figure 6. Similarly,
for n = 34 a 2-factor in the (12,34)-graph can be obtained by adjoining two vertex-
disjoint copies of B to the 2-factor in the (non-extremal) (4,14)-graph given in Figure
6. (Note that these non-extremal (6,18)- and (4,14)-graphs are obtained from Figure
3 with m = 3 and 2, respectively.) Then for n ≡ 4 or 8 mod 10, n ≥ 38, a 2-
factor in the (t′(n), n)-graph can be obtained by adjoining an appropriate number of
vertex-disjoint copies of B to the 2-factor in the (12,34)-graph or the (10,28)-graph,
respectively.

Theorem 1.4(ii) now follows from Lemmas 2.3, 2.4 and 2.5:

Lemma 2.6

For all even n ≥ 6, T ′(n) = {k : 2 ≤ k ≤ t′(n)}.

3 The spectrum C(n)

In this section we will determine C(n) for all n ≥ 14, n 
= 15(C(15) = ∅, see Theorem
1.5). Following [3] we define
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m =




�5α(n)
2

�e if n ∈ {24, 32, 42},
�5α(n)

2
�e + 2 for all other even n ≥ 16,

�5α(n)
2

�0 if n ∈ {19, 27, 37}, or 9 if n = 17,

�5α(n)
2

�0 + 2 for all other odd n ≥ 21,

where α(n) is as defined in Section 1 and �x�e (resp. �x�0) denotes the smallest even
(resp. odd) integer not less than x.

Lemma 3.1

For each odd integer n ≥ 17, C(n) = {k : 4 ≤ k ≤ c(n) and k even }.
Proof

Let k be even, 4 ≤ k ≤ c(n). It is straightforward to verify that n−m ≥ 2α(n) =
2c(n) (Theorem 1.5) ≥ 2k. Since n−m is even we can construct a k-regular bipartite
graph G1 of order n−m. On the other hand, it is again straightforward to verify that
t′(m) = α(n) = c(n) for every odd n ≥ 17. Hence since k is even and 4 ≤ k ≤ t′(m)
we can construct an almost k-regular triangle-free graph G2 of order m, with special
vertex x, such that V (G1) ∩ V (G2) = ∅, see Lemma 2.2. Now select two adjacent
vertices a and b in G1. We then obtain a k-regular graph on V (G1) ∪ V (G2) by
deleting the edge {a, b} and adding the new edges {x, a} and {x, b}. This k-regular
graph on n vertices is triangle-free and, since k ≥ 4, has x as a cut-vertex. Hence
k ∈ C(n), and the result follows.

Lemma 3.2

For each even integer n ≥ 14, C(n) = {k : 3 ≤ k ≤ c(n)}.
Proof

For n = 14 we have c(n) = 3 (Theorem 1.5) and so clearly C(14) = {3}. Suppose
now that n ≥ 16 and that 3 ≤ k ≤ c(n). As with the proof of Lemma 3.1 we
have n − m ≥ 2α(n) = 2c(n) ≥ 2k and so, since n − m is even, we can construct
a k-regular bipartite graph G1 of order n − m. Again as with the proof of Lemma
3.1 we have t′(m) = α(n) = c(n) for all even n ≥ 16, except that t′(18) = 7 =
α(30) + 1 = c(30) + 1. In any case since 3 ≤ k ≤ c(n) ≤ t′(m) we can construct an
almost k-regular triangle-free graph G2 of order m, with special vertex x, such that
V (G1)∩ V (G2) = ∅, see Lemma 2.6. Now proceed exactly as in the proof of Lemma
3.1 to obtain a k-regular graph on the n vertices V (G1)∪V (G2) which is triangle-free
and, since k ≥ 3, has x as a cut-vertex. Hence k ∈ C(n), and the result follows.

4 Conclusion

As mentioned in the introduction, part of the motivation for the determination of c(n)
in [3] was to determine a lower bound on f(2m). Let TF (2m) denote the spectrum
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{k: there exists a k-regular triangle-free graph on 2m vertices that does not have
a one-factorization }. Then C(2m) ⊆ TF (2m); furthermore, 2 ∈ TF (2m) for all
m ≥ 5 (just take the union of a pair of vertex-disjoint odd cycles, each of length
larger than 3). Hence from Theorem 1.7(ii) we have {k : 2 ≤ k ≤ c(2m)} ⊆ TF (2m)
for all m ≥ 7. This interval covers a little more than the bottom half of the possible
spectrum for TF (2m).
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Appendix

The following notations apply only to Figures 1 to 3. A solid circle (i.e. a dot)
denotes a single vertex, while a hollow circle with the number t inside denotes an
independent set of t vertices. A solid line between two circles indicates the pres-
cence of all possible edges between the corresponding sets of vertices; a dotted line
indicates the prescence of all possible edges except those of a one-factor between the
corresponding sets of vertices, while two dotted lines indicate the prescence of all
edges except those of two disjoint one-factors.
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