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Abstract

Let Km,n be a complete bipartite graph with two partite sets having
m and n vertices, respectively. A K1,k-factorization of Km,n is a set
of edge-disjoint K1,k-factors of Km,n which partition the set of edges of
Km,n. When k is a prime number p, Wang [Discrete Math. 126 (1994)]
investigated the K1,p-factorization of Km,n and gave a sufficient condition
for such a factorization to exist. Du [Discrete Math. 187 (1998) and Appl.
Math. J. Chinese Univ. 17B (2001)] extended Wang’s result to the case
k is a prime power pu. In this paper, it is shown that the conclusion
in Wang’s 1994 paper is true for any prime product pq. We will give a
sufficient condition for the existence of the K1,pq-factorization of Km,n,
whenever p and q are prime numbers, that is (1) m ≤ pqn, (2) n ≤
pqm, (3) pqm − n ≡ pqn − m ≡ 0 (mod (p2q2 − 1)) and (4) (pqm −
n)(pqn−m) ≡ 0 (mod pq(pq − 1)(p2q2 − 1)(m+ n)).

1 Introduction

Let Km,n be a complete bipartite graph with two partite sets having m and n ver-
tices. A subgraph F of Km,n is called a spanning subgraph of Km,n if F contains all
the vertices of Km,n. It is clear that a graph with no isolated vertices is uniquely
determined by the set of its edges. So in this paper, we consider a graph with no iso-
lated vertices to be a set of 2-element sets of its vertices. Let k be a positive integer.
A K1,k-factor of Km,n is a spanning subgraph F of Km,n such that every component
of F is a K1,k. A K1,k-factorization of Km,n is a set of edge-disjoint K1,k-factors of
Km,n which partition the set of edges of Km,n. In paper [7] the K1,k-factorization of
Km,n is defined as a resolvable (m,n, k, 1) bipartite Sk+1 design. The graph Km,n is
called K1,k-factorizable whenever it has a K1,k-factorization. For graph theoretical
terms see [1].

The K1,k-factorization of Km,n can be applied to combinatorial multiple-valued
index-file organization schemes of order two in database systems (see [7]). So the
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K1,k-factorization ofKm,n has been studied by several researchers. Using simple com-
putation, we can establish the following trivial necessary condition for the existence
of a K1,k-factorization of Km,n.

Theorem 1.1 If Km,n has a K1,k-factorization, then
(1) m ≤ kn,
(2) n ≤ km,
(3) km− n ≡ kn−m ≡ 0 (mod (k2 − 1)) and
(4) (km− n)(kn−m) ≡ 0 (mod k(k2 − 1)(m+ n)).

There are some known results on the existence of the K1,k-factorization of Km,n.
When k = 2, the spectrum problem for K1,2-factorization of Km,n has been com-
pletely solved by Ushio [4]. When k is a prime number p, the spectrum problem
for K1,p-factorization of Km,n has been partially solved (see [6] and [8]). Wang [8]
investigated the K1,p-factorization of Km,n and gave a sufficient condition for such a
factorization to exist.

Theorem 1.2 [8] For any prime number p, if
(1) m ≤ pn,
(2) n ≤ pm,
(3) pm− n ≡ pn−m ≡ 0 (mod (p2 − 1)) and
(4) (pm− n)(pn−m) ≡ 0 (mod p(p− 1)(p2 − 1)(m+ n)),
then Km,n is K1,p-factorizable.

In papers [2] and [3], Du extended Wang’s result to the case when k is a prime
power pu. Du [3] investigated the K1,pu-factorization of Km,n and gave a sufficient
condition for such a factorization to exist.

Theorem 1.3 [3] Suppose k is a prime power pu. If
(1) m ≤ kn,
(2) n ≤ km,
(3) km− n ≡ kn−m ≡ 0 (mod (k2 − 1)) and
(4) (km− n)(kn−m) ≡ 0 (mod k(k − 1)(k2 − 1)(m+ n)),
then Km,n is K1,k-factorizable.

In this paper, it is shown that the conclusion in [8] is true for any prime product
pq. We will give a sufficient condition for the existence of the K1,pq-factorization of
Km,n, whenever p and q are prime numbers; see the next theorem.

Theorem 1.4 For any prime numbers p and q, if
(1) m ≤ pqn,
(2) n ≤ pqm,
(3) pqm− n ≡ pqn−m ≡ 0 (mod (p2q2 − 1)) and
(4) (pqm− n)(pqn−m) ≡ 0 (mod pq(pq − 1)(p2q2 − 1)(m+ n)),
then Km,n is K1,pq-factorizable.
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2 Proof of Theorem 1.4

In this section we shall give the proof of Theorem 1.4. For our main result, we need
the following lemmas. The first two lemmas and the corollary are easy observations
and they are used in [8] also. For any two integers x and y, we use gcd(x, y) to denote
the greatest common divisor of x and y.

Lemma 2.1 Let u, v and w be positive integers. If gcd(u, v) = 1 then gcd(uv, u+
vw) = gcd(u, w).

Lemma 2.2 If Km,n has a K1,k-factorization, then Ksm,sn has a K1,k-factorization
for any positive integer s.

A corollary of Lemma 2.2 is as follows.

Corollary 2.3 Ks,sk is K1,k-factorizable for any positive integer s.

Corollary 2.3 implies that we only need to treat the case m < pqn and n < pqm.
Let

a =
pqn−m

p2q2 − 1
, b =

pqm− n

p2q2 − 1
, r =

(pq + 1)mn

pq(m+ n)
, c =

(pqn−m)(pqm− n)

pq(pq + 1)(m+ n)
.

Then, from conditions (1)–(4) in Theorem 1.4, a, b, and c are positive integers. It
is easy to see that m = a + pqb, n = pqa + b and r = a + b + c hold, and then r is
also a positive integer. Let d = gcd(a, pqb), a = du and pqb = dv for some positive

integers u and v with gcd(u, v) = 1. Since c ≡ 0 (mod (pq − 1)2), let e =
c

(pq − 1)2
.

These equalities imply the following equalities:

d =
pq(pqu+ v)e

uv
, r =

(u+ v)(p2q2u+ v)e

uv
, m =

pq(pqu+ v)(u+ v)e

uv
,

n =
(pqu+ v)(p2q2u+ v)e

uv
, a =

pqu(pqu+ v)e

uv
, b =

v(pqu+ v)e

uv
.

Now we can establish the following lemma.

Lemma 2.4 (1) If gcd(v, p2q2) = 1, then

m = pq(pqu+ v)(u+ v)s, n = (pqu+ v)(p2q2u+ v)s,

a = pqu(pqu+ v)s, b = v(pqu+ v)s, r = (u+ v)(p2q2u+ v)s,

for some positive integer s.
(2) If gcd(v, p2q2) = p, let v = pv1. Then

m = pq(qu+ v1)(u+ pv1)s, n = p(qu+ v1)(pq
2u+ v1)s,

a = pqu(qu+ v1)s, b = pv1(qu+ v1)s, r = (u+ pv1)(pq
2u+ v1)s,

87



for some positive integer s.
(3) If gcd(v, p2q2) = p2, let v = p2v2. Then

m = q(qu+ pv2)(u+ p2v2)s, n = p(qu+ pv2)(q
2u+ v2)s,

a = qu(qu+ pv2)s, b = pv2(qu+ pv2)s, r = (u+ p2v2)(q
2u+ v2)s,

for some positive integer s.
(4) If gcd(v, p2q2) = pq, let v = pqv3. Then

m = pq(u+ v3)(u+ pqv3)s, n = pq(u+ v3)(pqu+ v3)s,

a = pqu(u+ v3)s, b = pqv3(u+ v3)s, r = (u+ pqv3)(pqu+ v3)s,

for some positive integer s.
(5) If gcd(v, p2q2) = p2q, let v = p2qv4. Then

m = q(u+ pv4)(u+ p2qv4)s, n = pq(u+ pv4)(qu+ v4)s,

a = qu(u+ pv4)s, b = pqv4(u+ pv4)s, r = (u+ p2qv4)(qu+ v4)s,

for some positive integer s.
(6) If gcd(v, p2q2) = p2q2, let v = p2q2v5. Then

m = (u+ pqv5)(u+ p2q2v5)s, n = pq(u+ pqv5)(u+ v5)s,

a = u(u+ pqv5)s, b = pqv5(u+ pqv5)s, r = (u+ p2q2v5)(u+ v5)s,

for some positive integer s.

Proof Recall that p and q are prime numbers and gcd(u, v) = 1.
(1) By Lemma 2.1, we see that gcd(uv, u + v) = 1 and gcd(uv, p2q2u + v) =

gcd(v, p2q2) = 1. Since

r =
(u+ v)(p2q2u+ v)e

uv

is an integer, we see that
e

uv
must be an integer. Let s =

e

uv
. Then the equalities in

(1) hold.

(2) By Lemma 2.1, we see that gcd(uv1, u + pv1) = gcd(u, p) = 1 and
gcd(uv1, pq

2u+ v1) = gcd(v1, pq
2) = 1. Since

r =
(u+ pv1)(pq

2u+ v1)e

uv1

is an integer, we see that
e

uv1

must be an integer. Let s =
e

uv1

. Then the equalities

in (2) hold.
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(3) By Lemma 2.1, we see that gcd(uv2, u + p2v2) = gcd(u, p2) = 1 and
gcd(uv2, q

2u+ v2) = gcd(v2, q
2) = 1. Since

r =
(u+ p2v2)(q

2u+ v2)e

uv2

is an integer, we see that
e

uv2

must be an integer. Let s =
e

uv2

. Then the equalities

in (3) hold.

(4) By Lemma 2.1, we see that gcd(uv3, u + pv3) = gcd(u, p) = 1 and
gcd(uv3, pqu+ v3) = gcd(v3, pq) = 1. Since

r =
(u+ pv3)(pqu+ v3)e

uv3

is an integer, we see that
e

uv3

must be an integer. Let s =
e

uv3

. Then the equalities

in (4) hold.

(5) By Lemma 2.1, we see that gcd(uv4, u + p2qv4) = gcd(u, p2q) = 1 and
gcd(uv4, qu+ v4) = gcd(v4, q) = 1. Since

r =
(u+ p2qv4)(qu+ v4)e

uv4

is an integer, we see that
e

uv4

must be an integer. Let s =
e

uv4

. Then the equalities

in (5) hold.

(6) By Lemma 2.1, we see that gcd(uv5, u + p2q2v5) = gcd(u, p2q2) = 1 and
gcd(uv5, u+ v5) = 1. Since

r =
(u+ p2q2v5)(u+ v5)e

uv5

is an integer, we see that
e

uv5

must be an integer. Let s =
e

uv5

Then the equalities

in (6) hold.
This proves the lemma.

We are now in a position to prove Theorem 1.4. For our main result, we only
need the following direct constructions.

First of all, using the constructions which were devised by Wang (Lemma 3.5 and
Lemma 3.6 in [8]), we have the following lemmas.

Lemma 2.5 For any positive integers u and v, let

m = pq(pqu+ v)(u+ v),

n = (pqu+ v)(p2q2u+ v).

Then Km,n has a K1,pq-factorization.
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Lemma 2.6 For any positive integers u and v, let

m = pq(u+ v)(u+ pqv),

n = pq(u+ v)(pqu+ v).

Then Km,n has a K1,pq-factorization.

We then only need the following lemmas.

Lemma 2.7 For any positive integers u and v, let

m = pq(qu+ v)(u+ pv),

n = p(qu+ v)(pq2u+ v).

Then Km,n has a K1,pq-factorization.

Proof Let a = pqu(qu + v), b = pv(qu + v), r = (u + pv)(pq2u + v), r1 = u + pv
and r2 = pq2u+ v. Let X and Y be the two partite sets of Km,n and set

X = {xi,j | 1 ≤ i ≤ r1; 1 ≤ j ≤ pq(qu+ v)},
Y = {yi,j | 1 ≤ i ≤ r2; 1 ≤ j ≤ p(qu+ v)}.

We will construct a K1,pq-factorization of Km,n. We remark in advance that
the additions in the first subscripts of xi,j ’s and yi,j ’s are taken modulo r1 and
r2 in {1, 2, . . . , r1} and {1, 2, . . . , r2}, respectively, and the additions in the sec-
ond subscripts of xi,j ’s and yi,j ’s are taken modulo pq(qu + v) and p(qu + v) in
{1, 2, . . . , pq(qu+ v)} and {1, 2, . . . , p(qu+ v)}, respectively.

For each i and h, 1 ≤ i ≤ u, 1 ≤ h ≤ pq. Let s(i, h) = pq2(i− 1) + q(h− 1) + 1,
and t(i, h) = pq(i− 1) + h− 1, and set

Ei = {xi,kp(qu+v)+jys(i,h)+k,t(i,h)+j | 1 ≤ j ≤ p(qu+ v); 1 ≤ h ≤ pq; 0 ≤ k ≤ q − 1}.

For each i and h, 1 ≤ i ≤ v, 1 ≤ h ≤ p. Let ϕ(i, h) = u + p(i − 1) + h and
ψ(i, h) = pqu+ p(i− 1) + h− 1, and set

Eu+i = {xϕ(i,h),jypq2u+i,ψ(i,h)+j | 1 ≤ j ≤ pq(qu+ v); 1 ≤ h ≤ p}

Let F = ∪1≤i≤u+vEi; then it is easy to see that the graph F is a K1,pq-factor of
Km,n. Define a bijection σ from X∪Y onto X∪Y in such a way that σ(xi,j) = xi+1,j

and σ(yi,j) = yi+1,j . For each i ∈ {1, 2, . . . , r1} and each j ∈ {1, 2, . . . , r2}, let

Fi,j = {σi(x)σj(y) | x ∈ X, y ∈ Y, xy ∈ F}.

It is easy to show that the graphs Fi,j (1 ≤ i ≤ r1, 1 ≤ j ≤ r2) are K1,pq-
factors of Km,n and their union is Km,n. Thus {Fi,j | 1 ≤ i ≤ r1, 1 ≤ j ≤ r2} is a
K1,pq-factorization of Km,n.

This proves the lemma.
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Lemma 2.8 For any positive integers u and v, let

m = q(qu+ pv)(u+ p2v),

n = p(qu+ pv)(q2u+ v).

Then Km,n has a K1,pq-factorization.

Proof Let a = qu(qu+ pv), b = pv(qu+ pv), r = (u+ p2v)(q2u+ v), r1 = u+ p2v,
and r2 = q2u+ v. Let X and Y be the two partite sets of Km,n and set

X = {xi,j | 1 ≤ i ≤ r1; 1 ≤ j ≤ q(qu+ pv)},
Y = {yi,j | 1 ≤ i ≤ r2; 1 ≤ j ≤ p(qu+ pv)}.

For each i and h, 1 ≤ i ≤ u, 1 ≤ h ≤ q. Let s(i, h) = q2(i − 1) + q(h − 1) + 1
and t(i, h) = q(i− 1) + h− 1, and set

Ei = {xi,k(qu+pv)+jys(i,h)+k,g(qu+pv)+t(i,h)+j | 1 ≤ j ≤ qu+ pv;

1 ≤ h ≤ q; 0 ≤ k ≤ q − 1; 0 ≤ g ≤ p− 1}.

For each i and h, 1 ≤ i ≤ v, 1 ≤ h ≤ p. Let ϕ(i, h) = u+ p2(i− 1)+ p(h− 1)+1
and ψ(i, h) = qu+ p(i− 1) + h− 1, and set

Eu+i = {xϕ(i,h)+k,jyq2u+i,k(qu+pv)+ψ(i,h)+j | 1 ≤ j ≤ q(qu+ pv);

1 ≤ h ≤ p; 0 ≤ k ≤ p− 1}

Let F = ∪1≤i≤u+vEi; then it is easy to see that the graph F is a K1,pq-factor of
Km,n. Define a bijection σ from X∪Y onto X∪Y in such a way that σ(xi,j) = xi+1,j

and σ(yi,j) = yi+1,j . For each i ∈ {1, 2, · · · , r1} and each j ∈ {1, 2, · · · , r2}, let

Fi,j = {σi(x)σj(y) | x ∈ X, y ∈ Y, xy ∈ F}.

It is easy to show that the graphs Fi,j (1 ≤ i ≤ r1, 1 ≤ j ≤ r2) are K1,pq-
factors of Km,n and their union is Km,n. Thus {Fi,j | 1 ≤ i ≤ r1, 1 ≤ j ≤ r2} is a
K1,pq-factorization of Km,n.

This proves the lemma.

Applying Lemma 2.4 with Lemmas 2.5 to 2.8, we see that for the parameters m
and n satisfying conditions (1)–(4) in Theorem 1.4, Km,n has a K1,pq-factorization.
This completes the proof of Theorem 1.4.
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