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Abstract 

A diagonal cycle is a cycle of length 2n together with one edge between 
two vertices at distance n in the cycle. For example, /{4 - e is a cycle of 
length fonr with one extra edge between two vertices at distance two in 
the cycle. Methods for decomposing the complete graph Kv into diagonal 
cycles are given when v == 0 (mod 2n + 1) if n is odel, and when v == 1 
(mod 2n + 1), if n 3 (mod 4); in the case n 1 (mod 4) further partial 
results are obtained. 

1 Introduction and necessary conditions 

The necessary and sufficient conditions for the existence of a decomposition of the 
complete graph on v vertices, /{v, into cycles of length n are now known. There have 
been many papers written on the properties of cycle systems. For a survey of cycle 
systems see [6]. Until recently, the existence of some cycle sytems was not known. 
These cases are covered in [2] and [7]. A cycle of length 2n (71, 2:: 2) is a graph on 
the vertices 0,l,(J,2, ... ,a2n with edge set {ai,o,i+d, 1 :S i :S 271 - 1, {al,a2n}. A 
diagonal edge adjoined to such a cycle is any edge between two vertices at distance 
n apart around the cycle. In the above cycle, if a diagonal edge such as {at, an+d 

is adjoined to the cycle, we call the resulting graph a diagonal cycle and denote 
it by [0,1,0,2, . .. ,an; o,n+l, o,n+2, ... ,0,2n]' Furthermore, we denote any such diagonal 
cycle by D 2n . Thus, for instance, /{4 e is a diagonal cycle of the smallest possible 
size, denoted by D4 . There have also been many papers written on the subject of 
J{1 c designs. The necessary and sufficient conditions for the existence of /{4 - e 
designs are given in [3], the intersection problem is solved in [4] and blocking sets 
are investigated in [5]. 

A decomposition of a graph into edge-disjoint copies of D2n is called a D2n -

decomposition. A D2n-ciecomposition of the complete graph on v vertices is also 
called a. D2n -design of order v. A D2n-ciecomposition of a graph with vertex set 
\I may be written as a pair (\I, B), where B is a collection of copies of D2n that 
partitions the edge set of the graph. 
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The graph D2n has 2n + 1 edges, so the expected spectrum (or the set of possible 
orders) of D 2n-designs will consist of all v for which 

v(v - 1) 
2(2n + 1) 

is an integer. \Vhen 2n + 1 = pO, where p is prime and a is an integer, the expected 
spectrum for D 2n-designs is 

v == 0 or 1 (mod 2n + 1). 

When 2n + 1 -# pO, the set of v satisfying (*) will form a subset of the expected 
spectrum for D 2n-designs. 

In this paper we demonstrate methods for constructing D2n-designs of order 'U 

where n is odd and v satisfies (*), except when v 2n + 2 (mod 4n + 2) \vhere 
n == 1 (mod 4) and n ~ 13. Thus, this paper gives the necessary and some sufficient 
conditions for the existence of certain G-designs, where G can be thought of as a 
generalization of ](4 - e or an extension of an even length cycle. 

In this section we show that for all v 0 or 1 (mod 7), 'U > 7, there is a D6-design 
of order v. 

LEMMA 2.1 There is no D6-design of order 7. 

Proof 
In any D6-design of order 7 we expect 3 copies of D{j. Let the vertex set of ](7 be 
V = {1, 2, 3, 4, 5, 6, 7}. VVithout loss of generality, we can label one of the expected 
copies of D6 as [1, 2, ~}; 4, 5, 6]. (See Figure 1a.) This forces the vertices shown below 
in Figures 1b and 1c on the remaining two expected copies of D6 . 

6 3 3 2 

Figure 1a. Figure lb. Figure Ie. 
Expected Copy 1 Expected Copy 2 Expected Copy 3 

This leaves nowhere for the edges {3, 5} or {2, 6}. Hence there is no D6-clesign of 
order 7. 0 

\Ve now present examples of Do-decompositions of graphs required for our con­
structions. 
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EXAMPLE 1 
Let V = Z8 and let B = {[O, 1,7; 4, 5, 3] + i : i = 0,1,2, 3}. 

Then (V, B) is a D6-design of order 8. 

EXAMPLE 2 
Let V = Z14 and let 

B = { [0,1,2; 4, 5, 7], [0,2,9; 5, 8, 3], [0,6,3; 10,2,12]' 
[1,8,9; 13,2,3]' [1,12,6; 9, ll, 4], [2,7,1; 6,10,8]' 
[4,8,6; 7, 9,10], [4,9,0; 13,3,12], [5,10,12; 13,6, ll], 
[l1, 13, 7; 12,8,0] }. 

Then (l7, B) is a D6-design of order 14. 

EXAMPLE 3 

[1,5,2; 11,7,10]' 
[3,9, 12; 5, 6, 4], 
[8,13,10; 11, 3, 7], 

Let V = Za x Z7 and let B contain the blocks arising from the following set, with 
the first components all cycled modulo 3, and the second components fixed. 

{ [(0,0), (0, 2), (0,4); (0,5), (2, 5), (1, 2)], 
[(0,1), (0,6), (1,3); (0,2), (2,4), (2, 1)], 
[(0,3), (1,4), (0, 1); (1,0), (0,5), (2,3)]' 
[(0,4), (1,4), (2, 1); (2,5), (1,6), (2,2)]' 
[(2,0), (0,4), (0,3); (2,4), (1, 6), (1,4)], 

Then (V, B) is a D6-design of order 21. 

EXAMPLE 4 

[(0,0), (2,0), (2, 1); (1,3), (1,2), (2,6)]' 
[(0,2), (2, 1), (1,2); (0,5), (1,6), (1,0)], 
[(0,3), (2, 1), (1,0); (2,5), (2,6), (1,6)], 
[(1,1), (1,3), (1,0); (2,6), (1,4), (2, 5)], 
[(2,3), (2,5), (0, 1); (2,6), (2,2), (0, 2)] }. 

Let V = Z7XZ2 and let B = {[(O,O), (1, 1), (3,0); (0,1), (1,0), (3, 1)]+(i,O): i E Z7}' 

Then CV, B) is a D6-decomposition of ](7,7, where V is partitioned in the obvious 
\vay. 

The following three lemmas use the Dc-designs given in Examples 1, 2, 3 and 4 
to construct D6-designs of order v for all v == ° or 1 (mod 7), v > 7. 

LEMMA 2.2 There is a Dc-design of order 7k + 1, k 2: 1. 

Proof 
Let V = (Zk X Z7) U {(X)} and let B contain the copies of Dfj from the following two 
types of D6-decompositions. 

Type 1: For each i, 0:<::; i:<::; k 1, place a Dc-design of order 8 on ({i} XZ7)U{00}. 
Type 2: For each i and j satisfying ° :<::; i < j :<::; k 1, place a D6-decomposition of 
I<7,7 on {i, j} X Z7· 

Then (V, B) is a Dc-design of order 7k + 1. o 

LEMMA 2.3 There is a Dc-design of order 14k, k 2: 1. 
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Proof 
Let V Z2k x Z7 and let B contain the copies of D6 from the following two types 
of D6-decompositions. 

Type 1: For each i, ° :::; i :::; k -1, place a DG-design of order 14 on {2i, 2i + I} X Z7. 
Type 2: For each i and j satisfying ° :::; i < j :::; 2k 1 and (i, j) #- (2x, 21; + 1) for 
any x, ° :::; 1: :::; k 1, place a D6-ciecomposition of J{7,7 on {i, j} X 7l7 . 

Then (V, B) is a D6-design of order 14k. o 

LEMMA 2.4 Thcr-c is a D6-dcsign of or-der 14k + 7) k ;::: 1. 

Proof 
Let V Z2k+l x 717 and let B contain the copies of D6 from the following three types 
of D6-decompositions. 

Type 1: Place a D6-design of order 21 on Z3 x Z7' 
Type 2: For each i, 2 :::; i :::; k, place a D6-design of order 14 on {2i - 1, 2i} X 7l7 . 

Type 3: For each 'i and j satisfying 0:::; i < j:::; 2k, ('i,j) #- (2x -1,2x) for any :E, 
2:::; x:::; k, and {i,j} 1- {O, 1, 2}, place a D6-decompositioll of J{7,7 on {i,j} x 7l7 . 

Then (V, B) is a D6-design of order 14k + 7. o 

3 General Cases 

In this section we give methods for constructing the D2n-ciecompositions \vhich will 
be used in the cOIlstructions in Section 5. In Figures 2 and 3 the heavy edge denotes 
the diagonal edge of the diagonal cycle. 

LEMMA 3.1 There is a D2n -design of order- 2n + 1, 'Where n is odd and n ::: 5. 

Proof 
Ifn = 5, let V = (Z5X712)U{00} and let B = {[(1,0), (0,0), (0,1), (4, 0), (1, 1); (3,0), 
(2,1), (4, 1), (3,1),00] + (i, 0) : i E Z5}' If n 7, see Example 5 below. If n = 9, let 
V = (Zg x 2 2) U{ oo} and let B {[(I, 0), (0,0), (0, 1), (8,0), (1, 1), (7,0), (2,1), (6,0), 
(3,1);(5,0),(4,1),(8,1),(5,1),(7,1),(6,1),00,(2,0),(4,0)] + (i,O) : i E 7lg }. If 
n ::: l1, let V = (Zn x 7l 2) U {oo} and let 

B = {[(I, 0), (0,0), (0, 1), (71 1,0), (1, 1), (n - 2,0), (2, 1), ... , (n m, 0), (Tn, 1), ... , 
n 3 n-3 n+1 -1 n+1 

2 0)(-2-,1); (-2 -,0), 2 1), (n - 1,1), 2 1), (n - 2,1), 

+ 3 n + (2Tn - 1) 371, 
2 l), ... ,(n-Tn,l),( 2 ,1),···,(l4J,1),oo,(n(mod4)+ 

n 5 71 (2m - 3) n - 1 . . 
l-4- j ,0), ... ,(m,0),( 2 ,0), ... ,(2,0),( 2 O)]+(Z,O):'lEZn }. 

Then a straightforward check shows that CV, B) is a D 2n-ciesign of order 2n + 1. 0 
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EXAMPLE 5 
Let V = (Z7 X Z2)U{00} and let B = {[(I,a),(a,a),(a,I),(6,0),(1,I),(5,O),(2,1); 
(4,0), (3, 1), (6, 1), (4, 1), (5, 1), 00, (3, a)] + (i, 0) : 'i E Z7}' 

(0,0) (0,1) 

(1,0) (1,1 ) 

(2,0) (2,1) 

(3,0) (3,1) 

(4,0) (4,1) 

(5,0) (5,1) 

(6,0) (6,1) 

00 

Figure 2. The starter configuration for a D 14-design of order 15. 

Then (V, B) is a D 14-design of order 15. 

LEMMA 3.2 There is a D 2n -design of order 2n + 2, where n == 3 (mod 4). 

Proof 
If n = 3 see Example 1, otherwise let V = Z2n+2, where n 3 (mod 4). Define a 
sequence of differences, {ri j }, in the following way: 
{ri j } (1,-2,3, ... ,2m - 1,-2m, ... , ,_(11,;1), 11,+9 (n+l1) 

2' 2' 
n+(4m+l) (n+(4m+:3l) _ 1 _ n+:3) 

... , 2' 2 ' ... , n ,n, 2 . 

The sequence of differences, {dj }, forms a 'semi-cycle' in the starter configura­
tion defined below. By 'semi-cycle' we mean the path of length n on the vertices 
aI, a2,···, an+l or o,n+l, o,TI.+2,···, a2n· Let B = {[a, d j , ~~=l d j , ... , 2:,7::1

1 
dj ; 

n + 1, n + 1 + dj , n + 1 + 2:,~=1 rij , .. . ,17, + 1 + dj ] + i : i = 0, 1, ... , n}. 

Then (V, B) is a D 2n-design of order 271, + 2. o 

EXAMPLE 6 
Let V = ZIti and let {ri j } = (1, -2,3, -4,6, -7, 5). 
Let B = {[a, 1,15,2,14,4,13; 8, 9, 7, la, 6,12,5] + 1: : i = 0,1, ... ,7}. 
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o 

14 

13 __ ---------~----~ 

12 ~--~-------.-JI___---------_e 5 

6 

9 8 

Figure 3. The starter configuration for a D 14-clesign of order 16. 

Then (V, B) is a D14-design of order 16. 

LEMMA 3.3 There is a D2n -desig71 of order 471 + 3) where n == 1 (mod 4). 

Proof 
Let V where n == 1 (mod 4). Define a sequence of differences, {d j }, in the 
following way: 
{dj} (-2,4, 8, ... ,-(n 3),(71-1), (n+3),n+5,-(n+7),n+9, ... , 
2n 4, -(2n 2),1,271 + 1, 2n - 1, -(271 - 3),271 5, (2n 7), ... ,5, -3). 
Once again, the sequence of differences, {dj }, forms a 'semi-cycle' in the starter con­

figuration defined below. Let B = {[L~=l dj , L~=l dj , . .. , L;I=l tij; ~;t:; elj , L;':; dj , 

... '~~~1 dj ] + i : i E Z4n+3}. 

Then (V, B) is a D 2n-design of order 471 + 3. 0 

LEMMA 3.4 There is a D2n -decomposition of ) where 71 'is odd. 

Proof 
Let V Z2n+l X Z2 where 71 is odd. We shall consider the case n == 3 (mod 4) and 
the case n 1 (mod 4) separately. 

The case n == 3 (mod 4). If n = 3, see Example 4, otherwise define a sequence of 
differences, {el j }, in the following way: 
{elj} (1,2,3,4, ... ,2m 1,2771, ... , n~3,n!l, , ... ,71-1,71, 

Let B {[(O, 0), (L~=l (-I)J+1dj , 1), (L~=l (-l)j+ldj , 0), ... , (~;l:::( -1)J+1dj , 1), 

(~7::;( -1).i+ 1dj , 0); (0, 1), (~~=l (-1)J+ 1dj , 0), (Lj=l (-l)j+ldj , 1), ... , 

(~7::;(-1)j+ldj,0)'(L;'::;(-1)j+ldj,1)] + (i,O): i E Z2n+d. 

Then (V, B) is a D 2n-decomposition of J{2n+l,2n+l, where n == 3 (mod 4). 

The case n == 1 (mod 4). Define two sequences of differences, {aj} and {b j }, in 
the following way: 

226 



Ifn = 5 let {aj} (9,1,2,3,4) and let {bj } = (7,8,6,10,5). Ifn > 5 let 
{o,j} = (~(n + 1),1,2,3, ... ,n - 1) and 
{b j } = (71, + 2,17, + 3, ... , b(3n + l),n+ 1,217,,217, -1, ... , ~(3n + 5),17,). 
Let B = {[(O, 0), (2:~=1 (-l))+lo,j, 1), (2:~=1 (-l))+l aj , 0), ... , (2:;L::;~( -1)j+1 o,j , 1), 

(2: ~I'::: 11 ( - 1) j -H a j , 0); (0, 1), (2: ~ = 1 ( - 1 )j + 1 b j , 0), (2: ~ = 1 ( -1 »)+ 1 b j, 1), ... , 
(2:]:::;( -l))+lbj , 0), (2:;1::;;( -1)J+ 1bj , 1)] + (i, 0) : i E Z2n+l}. 

Then (V, B) is a D2n-decomposition of f{2n+l,2n+l, where 17, 1 (mod 4). 0 

4 Some useful D 2n-designs of order 2n + 2 

In this section we give examples of some D 2n-designs of order 2n + 2, where 17, == 1 
(mod 4). These designs enable us to complete the spectrum for D2n-ciesigns when 
n = 5 and n 9. 

EXAMPLE 7 
Let 1,7 23 x 24 and let B = 
{[(O, 0), (1,0), (0,1), (2,0), (2, 1); (0,2), (1, 1), (0,3), (1,2), (1,3)] + (i, 0), 
[(0,1), (1,1), (1, 2), (0,0), (2,3); (0,3), (2, 2), (0,2), (1,0), (1,3)] + (i, 0) : i E Z:3}' 

Then (V, B) is a DlO-desigll of order 12. 

EXAMPLE 8 
Let V = 25 X 24 and let B = 
{[(O, 0), (1,0), (0, 1), (3,0), (4, 1), (1, 1), (1, 2), (2,0), (3,3); 
(2,2), (4,2), (2, 1), (0,2), (4,0), (2,3), (3, 1), (4,3), (0,3)] + (i, 0), 
[(4,1), (3,2), (3,0), (1,0), (0,3), (1,2), (3,3), (0,2), (4,2); 
(4,3),(1,3),(4,0),(2,2),(1,1),(2,1),(2,0),(0,1),(2,3)]+ (i,O): i E 25}. 

Then (V, B) is a DIs-design of order 20. 

5 General Constructions 

Since Section 2 completely deals with D6-designs, here we consider D2n-designs where 
n is odd and n ~ 5. 

LEMMA 5.1 There is a D2n -de8ign of order k(2n + 1), where n is odd, n ~ 5, and 
k ~ l. 

Proof 
Let V 2k X 2 2n+1 and let B contain the diagonal cycles from the following two 
types of D2n-decompositions. 
Type 1: For each i, 0 SiS k - 1, place a D 2n-design of order 2n + 1 on {i} X 2 2n+1; 

such a design exists by Lemma 3.1. 
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Type 2: For each i and j satisfying 0 ::; i < j ::; k - 1, place a D2n-decomposition 
of [(2n+1,2n+1 on {'i, j} X Z2n+1; such a decomposition exists by Lemma 3.4. 
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Figure 5. D2n-decompositions of Type 2 
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Then (V, B) is a D2n-design of order k(2n + 1), where n is odd, n ~ 5, and k ~ 1. 
o 

LEMMA 5.2 There is a D 2n -design of onier k(2n + 1) + I, wher'c n = 5, n 9 or 
n == 3 (mod 4), n ~ 7, and k ~ 1. 

Proof 
Let V = (Zk X Z2n+1) U {oo} and let B contain the diagonal cycles from the following 
two types of D2n-ciecompositions. 
Type 1: For each i, 0 ::; i ::; k - 1, place a D2n-design of order 2n + 2 OIl 

({ i} X Z2n+1) U {oo}; such a design exists by Lemma 3.2, Example 7 or Example 8. 
Type 2: For each i and j satisfying 0 ::; i < j ::; k - 1, place a D2n-decomposition 
of [(2n+1,2n+1 on {i, j} X Z2n+1; such a decomposition exists by Lemma 3.4. 

Then (V, B) is a D2n-design of order k(2n + 1) + 1, where n .5, n = 9 or n == 3 
(mod 4), n ~ 7 and k ~ 1. 

o 
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LEMMA 5.3 There is a D 2n -design of order 2k(2n + 1) + I, where n == 1 (mod 4) 

and k 2. 1. 

Proof 
Let V = (Z2k X Z2n+d U {oo} and let B contain the diagonal cycles from the following 
two types of D 2n-decompositions. 
Type 1: For each i, 0 ::; i ::; 2k - 1, place a D 2n-design of order 4n + 3 on 
({ i, i + I} X Z2n+d U {oo}; such a design exists by Lemma 3.3. 
Type 2: For each i and .j satisfying 0 ::; i < j ::; 2k - 1, (i, j) # (2:r,2.7: + 1), 
o ::; :r: ::; k - 1, place a D 2n-decomposition of /{2n+l,2n+l on {i, j} X Z2n+l; such a 
decomposition exists by Lemma 3.4. 

Then (1/, B) is a D2n-design of order 2k(2n+ 1)+1, where n == 1 (mod 4) and k 2. 1. 
D 

6 Summary 

\iVhen combined, all of the lemmas in this paper give us the following theorem: 

THEOREM 6.1 

(i) When v == 0 (rnod 271,+ 1) and 71, is odd, there exists a D2n-de8ign of order 
11, except when n = 3 and v = 7. 

(ii)(a) When v == 1 (mod 2n + 1) and 71, = 5, n = 9, or n == 3 (mod 4), there 
exist8 a D 2n -design of order v. 

(ii)(b) When v == 1 (mod 471 + 2) and 71, == 1 (mod 4), n 2. 13, there exists a 
D 2n - design of ordC'r v. (However if'U == 271, + 2 (mod 4n + 2), n 2. 13, the 
exi8tence of a D 2n -design of order v remains open.) 

Proof 
Part (i) follows from Lemmas 2.1 and 5.1. 
Part (ii)(a) follows from Lemma 5.2. 
Part (ii) (b) follows from Lemma 5.3. D 

\Ve conjecture that when v == 1 (mod 2n + 1), a D 2n-design exists for all odd n 
and work is proceeding on this. 
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