Blocking sets in balanced path designs*

Gaetano Quattrocchi

Department of Mathematics, University of Catania viale A. Doria, 6, 95125 Catania, Italy

Abstract

Let $k \geq 3$. For each admissible v, we determine the set $\mathcal{BSH}(v, k, 1)$ of integers x such that there exists a balanced path design H(v, k, 1) with a blocking set of cardinality x.

1 Introduction

Let G be a subgraph of K_v , the complete undirected graph on v vertices. A G-design of K_v is a pair (V, \mathcal{B}) , where V is the vertex set of K_v and \mathcal{B} is an edge-disjoint decomposition of K_v into copies of the graph G. Usually we say that b is a block of the G-design if $b \in \mathcal{B}$, and \mathcal{B} is called the block-set. A G-design of K_v is also called a G-design of order v.

A balanced G-design [5, 4] is a G-design such that each vertex belongs to the same number of copies of G. Obviously not every G-design is balanced.

A balanced path design H(v, k, 1) [4] is a balanced P_k -design of K_v , where P_k is the simple path with k-1 edges (k vertices) $(a_1, a_2, \ldots, a_k) = \{\{a_1, a_2\}, \{a_2, a_3\}, \ldots, \{a_{k-1}, a_k\}\}.$

S. H. Y. Hung and N. S. Mendelsohn [5] proved that a H(v, 2h + 1, 1) $(h \ge 1)$ exists if and only if $v \equiv 1 \pmod{4h}$, and a H(v, 2h, 1) $(h \ge 2)$ exists if and only if $v \equiv 1 \pmod{2h-1}$.

Given a H(v, k, 1) (V, \mathcal{B}) , a subset X of V is called a blocking set of \mathcal{B} if for each $b \in B$, $b \cap X \neq \emptyset$, and $b \cap (V - X) \neq \emptyset$. A H(v, k, 1) with blocking set is said to be 2-colorable, and the partition (X, V - X) is called a 2-coloring.

Numerous articles have been written on the existence of blocking sets in projective spaces, in t-designs and in G-designs [1, 2, 7, 8, 9].

For each admissible v, let $\mathcal{BSH}(v,k,1)$ be the set of integers x such that there exists a H(v,k,1) with a blocking set of cardinality x. S. Milici [8] determined $\mathcal{BSH}(v,k,1)$ for k=3,4. The aim of this note is to determine $\mathcal{BSH}(v,k,1)$ for every $k \geq 3$.

^{*}Research supported by MURST and GNSAGA of CNR Italy.

Theorem 1 (Necessary condition). Let $x \in \mathcal{BSH}(v, k, 1)$, then

$$\frac{v-1}{k-1} \le x \le \frac{(k-2)v+1}{k-1}.$$

Proof. Let X be a blocking set in a H(v, k, 1) (V, \mathcal{B}) , |X| = x. Since each $b \in \mathcal{B}$ meets X, we have $x \frac{k(v-1)}{2(k-1)} - \frac{x(x-1)}{2} \ge \frac{v(v-1)}{2(k-1)}$. This inequality and the fact that V - X is a blocking set imply the proof.

2 $\mathcal{BSH}(v,k,1)$ for even $k \geq 4$.

In this section we determine the set $\mathcal{BSH}(v, k, 1)$ for each even $k \geq 4$. To prove this result we will use the $v \to v + k - 1$ construction for H(v, k, 1) [5].

Lemma 1 Let $k \geq 4$ be an even integer and let $x \in \mathcal{BSH}(v, k)$. Then $x + t \in \mathcal{BSH}(v + k - 1, k, 1)$ for each t = 1, 2, ..., k - 2.

Proof. Let $W = \{a_{\mu} \mid \mu = 0, 1, \dots, k-1\}$. For each $i = 0, 1, \dots, \frac{k}{2} - 1$ and $\rho = 0, 1, \dots, \frac{k}{2} - 1$ let $y_{2\rho}^i = a_{\rho+i}$ and $y_{2\rho+1}^i = a_{k-1-\rho+i}$, where the indices $\rho + i$ and $k-1-\rho+i$ are reduced (mod k) to the range $\{0, \dots, k-1\}$. Define the H(k, k, 1) (W, \mathcal{D}) by putting in D the blocks $(y_0^i, y_1^i, \dots, y_{k-1}^i)$.

Put $v = 1 + (k-1)\alpha$, $\alpha \ge 1$. Let (V, \mathcal{B}) , $V \cap W = \emptyset$, be a H(v, k, 1) with a blocking set X. Let $V = (\bigcup_{t=1}^{k-1} X^t) \cup \{a_0\}$, $X^t = \{x_j^t \mid j = 1, 2, ..., \alpha\}$. Suppose $X^1 \subseteq X$ and $X^{k-1} \subseteq V - X$.

For each $j=1,2,\ldots,\alpha, i=0,1,\ldots,k-2$ and $\rho=0,1,\ldots,\frac{k}{2}-1$ put $z_{2\rho}^{j,i}=x_{j}^{k-\rho+i}$ and $z_{2\rho+1}^{j,i}=a_{1+\rho+i}$ where the indices $k-\rho+i$ and $1+\rho+i$ are reduced (mod k-1) to the range $\{1,2,\ldots,k-1\}$. Let $\mathcal C$ contain the blocks $(z_0^{j,i},z_1^{j,i},\ldots,z_{k-1}^{j,i})$.

Put $\mathcal{E} = \mathcal{B} \cup \mathcal{C} \cup \mathcal{D}$. It is easy to verify that (see [5]) $(V \cup W, \mathcal{E})$ is a H(v+k-1, k, 1). Now we prove that $\overline{X} = X \cup \{a_i \mid i = 1, 2, ..., t\}, \ t = 1, 2, ..., k-2$, is a blocking set of \mathcal{E} . Let $b \in \mathcal{E}$. If $b \in \mathcal{D}$ then $b \cap \overline{X} = \{a_i \mid i = 1, 2, ..., t\}$ and $b \cap (V - \overline{X}) = \{a_0\} \cup \{a_i \mid i = t+1, t+2, ..., k-1\}$. If $b \in \mathcal{B}$ then $b \cap X \neq \emptyset$ and $b \cap (V - X) \neq \emptyset$. If $b \in \mathcal{C}$ then $b \cap (X^1 \cup \{a_1\}) \neq \emptyset$ and $b \cap (X^{k-1} \cup \{a_{k-1}\}) \neq \emptyset$. \square

Theorem 2 For each even $k \ge 4$ and for each $v \equiv 1 \pmod{k-1}$, we have $\mathcal{BSH}(v,k,1) = \left\{ x \mid \frac{v-1}{k-1} \le x \le \frac{(k-2)v+1}{k-1} \right\}$.

Proof. For v = k the proof follows from the fact that each block has cardinality k. Theorem 1 and Lemma 1 complete the proof.

In this section we determine the set $\mathcal{BSH}(v, k, 1)$ for each odd $k \geq 3$. We will use the difference method to construct H(v, k, 1) [3, 6].

Lemma 2 If $2 \in \mathcal{BSH}(4h+1,2h+1,1)$, $h \geq 1$, then $\mathcal{BSH}(4h+1,2h+1,1) = \{2,3,\ldots,4h-1\}$.

Proof. For h = 1 the proof is straight forward. Suppose $h \ge 2$. By Theorem 1 it is sufficient to prove that $\{2, 3, ..., 2h\} \subseteq \mathcal{BSH}(4h+1, 2h+1, 1)$.

Let X be a blocking set in a $\mathcal{BSH}(4h+1,2h+1,1)$ $(V,\mathcal{B}), |X|=2$. For each x with $3 \le x \le 2h$, let Y be a subset of V such that |Y|=x-2 and $|Y \cap X|=0$. Then $X \cup Y$ is a blocking set of \mathcal{B} .

Theorem 3 For each odd $k \geq 3$ and for each $v \equiv 1 \pmod{k-1}$, we have $\mathcal{BSH}(v,k,1) = \left\{ x \mid \frac{v-1}{k-1} \leq x \leq \frac{(k-2)v+1}{k-1} \right\}$.

Proof. Put k=2h+1 and v=1+4hm, $h\geq 1$ and $m\geq 1$. For each $j=0,1,\ldots,m-1$ and $t=0,1,\ldots,h-1$ define $a_0=0$, $a_{2t+1}=t+1+2hj$ and $a_{2t+2}=4hm-t$. Using the difference method construct a H(1+4hm,1+2h,1) (V,\mathcal{B}) having the following base blocks [6]:

$$b_j = (a_0, a_1, \dots, a_{2h-1}, a_{2h}).$$

The difference of the pair $\{a_{i_1}, a_{i_2}\}$, named so that $a_{i_1} < a_{i_2}$, is defined to be $D(a_{i_1}, a_{i_2}) = \min\{a_{i_2} - a_{i_1}, v - (a_{i_2} - a_{i_1})\}$.

Let S be the set of the differences of the pairs $\{a_{i_1}, a_{i_2}\}$ where a_{i_1} and a_{i_2} are vertices of b_j , $j = 0, 1, \ldots, m - 1$, such that $\{a_{i_1}, a_{i_2}\}$ is not an edge in b_j . The elements of S are the following:

 $D(a_{2t+2}, a_{2\rho}) = t - \rho + 1$ for each $\rho = 0, 1, ..., h - 1$ and $t = \rho + 1, \rho + 2, ..., h - 1$; and, if $h \ge 2$,

 $D(a_{2\rho+1}, a_{2t+1}) = t - \rho,$

 $D(a_{2\rho+1}, a_{2t+2}) = t + 2 + \rho + 2hj,$

 $D(a_{2t+1}, a_{2\rho}) = t + 1 + \rho + 2hj,$

for each $\rho = 0, 1, ..., h - 2$ and $t = \rho + 1, \rho + 2, ..., h - 1$.

It is easy to see that $S \cap \{2h\sigma \mid \sigma = 1, 2, ..., 2m-1\} = \emptyset$. So there is exactly one $b \in \mathcal{B}$ meeting both the elements $2h\sigma_1$ and $2h\sigma_2$, for every $\sigma_1, \sigma_2 \in \{0, 1, ..., 2m-1\}$, $\sigma_1 \neq \sigma_2$. Therefore the pair $\{2h\sigma_1, 2h\sigma_2\}$ is an edge in b.

Since every point of V meets m(2h+1) paths of \mathcal{B} , the following inequalities hold:

$$1 \le |b \cap \{2h\sigma \mid \sigma = 0, 1, \dots, 2m - 1\}| \le 2 \quad \forall b \in \mathcal{B}. \tag{1}$$

From (1) it follows that $\{2h\sigma \mid \sigma=0,1,\ldots,2m-1\}$ is a blocking set of minimum cardinality.

Put $X_i = \{i + 2h\sigma \mid \sigma = 0, 1, \dots, 2m - 1\}, i = 0, 1, \dots, h - 1$. It is easy to see that $X_i \cap X_j = \emptyset$ for each $i, j \in \{0, 1, \dots, h - 1\}, i \neq j$. Then from (1) and |b| = 2h + 1

it follows that $\bigcup_{i=0}^{\mu} X_i$, $\mu = 1, 2, ..., h-1$, is a blocking set of \mathcal{B} having cardinality $2m(\mu + 1)$.

To complete the proof it is sufficient to prove that if x is an integer such that 2m < x < 2hm and $x \neq 2\mu m$ for each $\mu = 1, 2, \ldots, h-1$, then $x \in \mathcal{BSH}(1+4hm, 1+2h)$. For m=1 this result follows from Lemma 2. For $m \geq 2$, let $x=2\mu m+\sigma, \sigma=1,2,\ldots,2m-1$. Then $(\bigcup_{i=0}^{\mu-1} X_i) \cup \{\mu+2hj \mid j=0,1,\ldots,\sigma-1\}$ is a blocking set having cardinality $2\mu m+\sigma$.

References

- L.M. Batten, Blocking sets in designs, Congressus Numerantium, 99 (1994), 139-154.
- [2] H. Gropp, Blocking sets in configurations n_3 , Mitt. Math. Sem. Giessen 201 (1991), 59-72.
- [3] M. Hall Jr, Combinatorial Theory, Cambridge University Press, Cambridge (1986).
- [4] P. Hell and A. Rosa, Graph decompositions, handcuffed prisoners, and balanced P-designs, Discrete Math., 2 (1972), 229–252.
- [5] S. H. Y. Hung and N. S. Mendelsohn, (1974) Handcuffed designs, Aequationes Math., 18, 256–266.
- [6] J.F. Lawless, On the construction of handcuffed designs, J. Combin. Theory Ser. A, 16 (1974), 76-86.
- [7] C.C. Lindner and C.A. Rodger, Blocking set preserving embedding of partial $K_4 e$ designs, Australasian J. Combin., 12 (1995), 121-126.
- [8] S. Milici, Blocking sets in handcuffed designs, Australasian J. Combin., 7 (1993), 229-236.
- [9] S. Milici and Z. Tuza, Disjoint blocking sets in cycle systems, *Discrete Math*, to appear.

(Received 10/12/98)