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Abstract 

A conjecture for generalized Hadamard matrices over group G of order 
p states that Hadamard matrix GH(p, h) exists only if the matrices In 
and nIn are Hermitian congruent [1], where n = ph and p is prime. Ref­
erences (4,5] document many parameter values for which non-existence is 
known to occur. Here, methods for establishing non-existence based upon 
a fundamental necessary condition of Brock [2] are considered. Several 
parameter sequences for which non-existence occurs are identified. The 
methods exploited complement de Launey's [6] approach via number the­
oretic properties of the Hadamard determinant. Neither investigation is 
exhaustive of all possibilities. 

1 Introduction 

Let Cs be the multiplicative group of all complex 8 th roots of unity. The square 
matrix H = [hij ] of order rover Cs is said to be a "Butson Hadamard matrix', 
briefly a B H (8, r) matrix, if and only if H H* = r Ir . Here, H* is the conjugate 
transpose of H. 

BH(2, r) matrices are referred to simply as Hadamard matrices (or ±1 matrices). 
Such matrices exist only if r = 1,2 or else r = 4k, where k is a positive integer. 
Existence has been verified for at least each and every k ::; 106, and the classical 
Hadamard conjecture states that existence occurs for each integer k > O. 

For primes p > 2, the situation is quite different. A necessary condition for the 
existence of BH(p > 2, r) is that r = pt, where t is a positive integer. This condition 
is also sufficient, for the case of BH(p > 2,2mpk), provided 0 ::; m ::; k, where k is 
an integer (3]. 

It has been conjectured [1] that BH(p, pt) exists, for primes p > 2 and all positive 
integers t. However, instances have been discovered where this conjecture fails [4]. 
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The most recent generalized Hadamard conjecture(6] is that H(p, n) exists only if In 
is Hermitian congruent to nIn, where n = pt. 

In this paper techniques are explored for proving non-existence of infinite se­
quences of potential BH(s, rk), k E K, where K is a countably infinite set of positive 
integers. Sets K are identified for which {BH(s, rk) : k E K} = cp. These techniques 
consist chiefly of methods for proving non-existence of non-trivial solutions to homo­
geneous Diophantine equations 

2 Hadamard Matrices Over Groups 

Definition 1: Let (G,8) be a group of order g. A (g, k; A)-difference matrix is a 
k x gA matrix D (dij ) with entries from G, such that for each 1 :::; i < j :::; k, the 
multiset 

{dil 8 djll : 1 ::; 1 ::; 9 A } 

contains every element of G A times. When G is Abelian, typically, additive notation 
is used, so that differences dil - dj1 are employed. 

Consider the additive group G = {O, 1, 2} with modulo three arithmetic. Two in-
equivalent (3,6; 2)-difference matrices over G are 

0 0 0 0 0 0 
0 0 1 1 2 2 

A= 0 1 0 2 2 1 
0 1 2 0 1 2 
0 2 2 1 0 1 
0 2 1 2 1 0 

and 

0 0 0 0 0 0 
1 2 0 2 0 1 

B= 1 0 2 2 1 0 
0 2 2 0 1 1 
2 2 0 1 1 0 
2 0 2 1 0 1 

Definition 2: A generalized Hadamard matrix GH(g, A) over group G is a (g, gA; A)­
difference matrix (4]. 

A number of authors have studied these matrices [7], (8], [11], [12], [13], and [14]. 
For a summary of the known matrices, see Theorem A of Street [14]. 
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Clearly, both difference matrices A and B are generalized Hadamard matrices 
GH(3, 2), each having an associated Butson Hadamard matrix BH(3, 6). This asso­
ciation will now be clarified. 

Theorem 1 For primes p > 2, there exists a generalized Hadamard matrix 
B H (p, p)..) over the cyclic group Cp if and only if there exists a generalized Hadamard 
matrix GH(p,)..) over the additive group Zp = {O, 1,2, ... ,p - I}, (+). 

A generalization of this result is stated by Drake [7], whose proof follows from results 
of Butson [3]. This association will be illustrated by example. 

Let C3 = {I, x, x2 }, where x = e27ri
/ 3 is a primitive cube root of unity. Consider the 

BH-matrices 

H = BH(3,6) = x E 

where E is one of the difference matrices A, B above. The notation means that 
matrix elements obey hij = xeij

• 

By calculation, H H* = 61; therefore, H is a generalized Hadamard matrix in the 
classical sense. Also, by calculation H is a GH(3,2) matrix with respect to C3 ,8. 
The Hadamard exponent forms (matrices A, B above) have already been cited as 
GH(3, 2) with respect to the group Z3, EB. 

The next theorem provides a necessary condition for the existence of GH(g,)..) over 
group G, IGI = g: 

Theorem 2 A GH(g,)..) with n = g).. odd exists over Abelian group G of order IGI = 
g only if a nontrivial solution in integers x,y,z exists to the quadratic Diophantine 
equation 

Z2 = nx2 + (_1)(t-l)/2 ty2, 

for every order, t, of a homomorphic image of G. 

The proof of this theorem can be found in Brock [2], and it is discussed in Colbourn 
and Dinitz [4]. 

Corollary 1 For primes p > 2, and)" > 0 an odd integer, BH(p,p)..) exists only if 
there are nontrivial solutions in integers to both equations 

and 

Z2 = p)..x2 + y2. 

Proof. If G is an Abelian group of order p > 2, where p is prime, there exist 
homomorphic images of G of orders t = 1, p. 0 
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3 The Imbedding Problem 

Definition 3: Let G be an Abelian group of order g, with n = gA, where A is a 
positive integer. For 0 < k < n, a k x n difference matrix D over the group G is 
"completable" if and only if there exists a GH(g, A) matrix having D as its first k 
rows. 

The Hadamard imbedding problem concerns the question of whether the matrix D 
can be extended by the process of row addition so as to be completable. This problem 
has been studied variously by Beder [1], Brock [2], Drake [7] and others. 

Definition 4: Difference matrix D of dimension k x n is "locally maximal" (in 
dimension) if there is no (k+ 1) x n difference matrix which reduces to D by deletion 
of a single row. If D is a GH(g, A), then it is globally maximal [4]. 

It is interesting to note that there may exist locally maximal (g, k; A)-difference 
matrices for which k < gA, even in cases where a (g, gA; A)-difference matrix exists. 
For 9 = 2 and A = 10, Beder [I] constructs such (±1) matrices, characterized by 
k = 8,12,16. 

With respect to the group G = {O, 1, 2}, (+), the present authors have discovered 
locally maximal difference matrices D kx15 with k = 7,8 (see Tables I and II). The 
observation that gcd(7, 15) = gcd(8, 15) = 1 appears a stark contrast to what may be 
observed in Beder's (±1) difference matrices; namely, in cases where locally maximal 
difference matrices of dimension D kxn and Dnxn simultaneously exist, gcd(k, n) f= 1 
(for n = 20; k = 8,12,16). 

This contrasting behaviour leads to the likely conjecture that GH(3, 15) does not ex­
ist. Actually, this has been known for several years. However, following up this con­
jecture in absence of this knowledge motivated the present research on non-existence 
of certain GH(g, A). 

Tables I and II show the previously referred to locally maximal difference matrices 
with respect to group G = {O, 1, 2}, (+): 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 1 1 1 1 2 2 2 2 2 
0 0 1 1 1 2 2 0 0 0 1 1 2 2 2 
0 0 1 1 2 1 0 2 2 0 2 2 1 1 0 
0 0 1 2 2 0 1 1 2 2 1 0 2 0 1 
0 1 2 0 2 1 2 0 1 2 1 0 1 2 0 
0 1 0 2 2 2 1 2 1 0 0 1 1 0 2 

Table I 
A (3,7,15)-difference matrix 
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 2 1 2 1 2 1 2 1 2 0 0 0 0 
0 2 1 1 1 1 1 2 0 2 0 2 2 0 0 
0 1 2 2 2 0 1 2 1 0 0 1 1 2 0 
0 2 1 1 0 2 1 0 2 0 2 1 0 2 1 
0 1 2 0 1 2 0 2 0 1 1 2 0 2 1 
0 2 0 0 1 2 2 1 1 0 2 2 1 1 0 
0 1 0 2 1 2 1 0 2 1 0 0 2 1 2 

Table II 
A (3,8,15)-difference matrix 

4 Quadratic Diophantine Equations 

We now consider methods for establishing non-existence of nontrivial integer solu-
tions to the homogeneous Diophantine equation 

ax2 + by2 + cz2 = O. (1) 

Lemma 1 If a and b are integers, then the equation 

Z2 = abx2 ± ay2 

has nontrivial integer solutions only if the reduced equation 

has nontrivial integer solutions. 

Proof. The result is obvious. If (x, y, z) is a solution, of necessity alz. Therefore, 
let z = ai, where l is an integer if z is. 0 

Method I: 

Legendre's Theorem: [10] 

Let a, b, c be pairwise relatively prime integers which are squarefree and not all of 
the same algebraic sign. Then equation (1) has a nontrivial solution in the integers 
if and only if -bc, -ac, -ab are quadratic residues of a, b, c, respectively. 

Warwick de Launey [6] has approached the non-existence question for generalized 
Hadamard matrices by means of number theoretic properties of the Hadamard de­
terminant. Basically, he proves the non-existence of many generalized Hadamard 
matrices for groups whose orders are divisible by 3,5 or 7; for example, GH(15, C I5 ), 

GH(15,C3), and GH(15,C5). 

That his work is non-exhaustive is evidenced by the following result: 
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Theorem 3 For Abelian groups of order p, and for odd primes 
p == ±3(mod 5), GH(p,5) does not exist. 

Proof. Consider the problem of finding integer solutions to the equation 

where p ±3(mod 5). This can be done only if one can find integer solutions of 

(2) 

(3) 

As x2 == ±3(mod 5) has no solutions, by Legendre's theorem neither does (2) or (3) 
have nontrivial integer solutions. 0 

Note. Clearly, theorem 3 generalizes some of de Launey's results. 

5 Reciprocity 

Definition 5: For groups G, H with IGI = g and IHI .\, potential generalized 
Hadamard matrices GH(g,.\) and GH(.\, g) satisfy a reciprocity relation provided 
both exist or both do not exist. 
Example. GH(3, 5) and GH(5, 3) are reciprocally non-existent, as in each case 
the pertinent reduced equation is of the form 

By Legendre's theorem, this equation has no nontrivial integer solutions (a, b, c), 
since ±3 is a quadratic non-residue of 5. 
By the same approach, the following result can be established: 

Theorem 4 Let.\ be a prime number. If (-1)-91-.\ and (-1) \;-1 .\ are both quadratic 

non-residues of 5, or if (-1) -91- 5 and (-1) ),;-1 5 are both quadratic non-residues of .\, 
then GH(5,.\) and GH('\, 5) constitute a reciprocally non-existent pair. 

Corollary 2 If 7 + 5k is a prime number, then GH(5, 7 + 5k) and GH(7 + 5k, 5) 
constitute a reciprocally non-existent sequence of potential generalized Hadamard ma­
trices. 

Theorem 5 Let p = 4k + 3 and q = 4k + 5 be prime numbers, where 2 is a quadratic 
non-residue of p. Then (p, q) is a reciprocal pair. 
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Proof. Since p, q are squarefree and relatively prime, Legendre's theorem applies 
to determine integer solutions of the equations 

and 

Existence of a nontrivial integer solution of either equation can happen only if there 
exists a nontrivial integer solution (f, m, n) for equations of the following type 

No solution for this equation exists, as 

x 2 == 2(mod p) 

has no solution. o 

A more general method for finding reciprocal pairs employs a result of Euler: 

Euler's Theorem: [15] 
If p is an odd prime which does not divide a, then x2 == a( mod p) has a solution or 
no solution according as 

a(p-l)/2 == l(mod p) 

or 

a(p-l)/2 == -l(mod p). 

Reciprocity Theorem: Let p = 4k + 3 and a = 4l +5 be odd primes which satisfy 
Euler's condition 

a(p-l)/2 == -l(mod p). 

Then GH(a,p) and GH(p, a) constitute a reciprocal non-existent pair of generalized 
Hadamard matrices over groups G, H of order p, a. 
Proof. Under the hypotheses of the theorem, Euler's condition guarantees the 
non-existence of non-trivial integer solutions (x, y, z) to both equations 

and 
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whose reduced equation is of the form 

o 

Several reciprocal pairs are given by Table III: 

3 5 
3 17 
3 29 
11 13 
11 17 
11 29 
19 29 
19 59 
19 79 
59 61 
III 113 

Table III 

Method II: 

When the hypotheses of Legendre's theorem fail, an analysis of last digit [9] of 
separate members of equation (1) is sometimes fruitful. Here, if x is a nonzero 
integer, the last digit of x is denoted by [x]. For instance, the last digit of x2 is in 
the set 

[x 2
] = {O, 1,4,5,6, 9}, and 

[3x2
] = {O, 2,3,5, 7, 8} = [7x2

], 

[(10k + l)x2
] = [x 2

], k 2:: ° an integer 

[5x2
] = {O, 5}, 

[9x2] = {O, 1,4,5,6, 9}. 

These facts are useful in proving some non-existence theorems below. 

Lemma 2 The equation 

(4) 

where k is a non-negative integer satisfying (2k + 1) -¥=- O( mod 5), does not possess a 
nontrivial solution in integers. 
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Proof. By the method of contradiction, assume a nontrivial solution (x, y, z) exists, 
where (x, y, z) are non-negative integers. As the equation is homogeneous of degree 
two, (x, y, z) is a solution if and only if (tx, ty, tz) is a solution, where t is an integer. 
Therefore, it can be assumed that gcd(x, y, z) = 1. 

Clearly, z is divisible by 3. If z = 3£, where £ is an integer, then equation (4) reduces 
to 

(5) 

As the last digit of each integer (x2, y2, k2) belongs to the set L = {O, 1,4,5,6, 9}, 
the last digits of 5(2k + l)x2 and 3£2 are members of {O,5} and {O, 2, 3, 5,7, 8}, 
respectively. For compatibility with (5), the last digit of y2 can only be zero or five; 
the~efore, y = 5m, where m is an integer. 

N ow equation (5) becomes 

(6) 

Therefore, £ = 5p, where p is an integer. Equation (6) becomes 

Since five does not divide 2k + 1, it is necessary that x = 5q, where q is an integer. 
The conclusions 51Y and 51x imply that 51z. As this contradicts gcd(x, y, z) = 1, the 
assumption that (4) has a nontrivial solution in the integers must be false. 0 

Lemma 3 The equation 

Z2 = 5 . n . (10k + 1 )x2 + 5y2 (7) 

has no nontrivial solution for integers k ~ ° and n = 1, 3, 7. 

Proof. By the method of contradiction, assume a nontrivial solution (x, y, z) exists, 
where (x, y, z) are positive integers. As the equation is homogeneous of degree two, 
(x, y, z) is a solution if and only if (tx, ty, tz) is a solution, where t is an integer. 
Therefore, it can be assumed that gcd(x, y, z) = 1. 

Clearly, z is divisible by 5 in equation (7). 

Case 1: n = 1 

If z = 5£, where £ is an integer, then equation (7) reduces to 
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(8) 

As the last digit of each integer (X2,y2,£2) belongs to the set L = {O,I,4,5,6,9}, 
the last digits of 5£2 and (10k + l)x2 are members of {O,5} and {O, 1,4,5,6, 9}, 
respectively. For compatibility with (8), the last digit of x 2 and y2 can only be zero 
or five; therefore, x = 5m and y = 5p, where m,p are integers. 

The conclusions 51Y and 51x imply that 51z. As this contradicts gcd(x, y, z) = 1, the 
assumption that (7) has a nontrivial solution in the integers must be false. 

Case 2: n = 3 

If z = 5£, where £ is an integer, then equation (7) reduces to 

(9) 

As the last digit of each integer (X2,y2,f2) belongs to the set L = {O,I,4,5,6,9}, 
the last digits of 5£2 and 3(10k + l)x2 are members of {0,5} and {O, 2, 3, 5,7, 8}, 
respectively. For compatibility with (9), the last digit of y2 can only be zero or five; 
therefore, y 5m, where m is an integer. 

Now equation (9) becomes 

3(10k + l)x2 = 5£2 - 25m2
• 

Since five does not divide 3(10k+l), it is necessary that x = 5p, where p is an integer. 
The conclusions 51Y and 51x imply that 51z. As this contradicts gcd(x, y, z) = 1, the 
assumption that (7) has a nontrivial solution in the integers must be false. 

Case 3: n 7 

If z 5£, where £ is an integer, then equation (7) reduces to 

(10) 

As the last digit of each integer (x2, y2, £2) belongs to the set L = {O, 1,4,5,6, 9}, 
the last digits of 5£2 and 7(10k + l)x2 are members of {0,5} and {O, 2, 3, 5, 7, 8}, 
respectively. For compatibility with (10), the last digit of y2 can only be zero or five; 
therefore, y = 5m, where m is an integer. 

Now equation (10) becomes 

7(10k + l)x2 = 5£2 - 25m2
• 

Since five does not divide 7(10k+ 1), it is necessary that x = 5p, where p is an integer. 
The conclusions 51Y and 51x imply that 51z. As this contradicts gcd(x, y, z) = 1, the 
assumption that (7) has a nontrivial solution in the integers must be false. 0 
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6 Summary 

Theorem 6 Several sequences of potential Hadamard matrices over Abelian group 
G of order g which do not exist are: 

1. GH(3, 5(2k + 1)), (2k + 1) :t O(mod 5), with k a non-negative integer, 

2. GH(5, n(10k + 1)), for n = 1,3,7, k non-negative, 

3. GH(5,p), where p == ±3(mod 5) is an odd prime, 

4. Reciprocal pairs GH(5, 7+5k) and GH(7+5k, 5), where 7+5k is an odd prime. 

Coronary 3 For k a non-negative integer, the following classes of BH matrices do 
not exist: 

1. BH(3, 15(2k + 1)), (2k + 1) :t O(mod 5), 

2. BH(5, 5n(10k + 1)), for n = 1,3,7, 

3. BH(5, 5p), p == ±3(mod 5), an odd prime, 

4. Reciprocal pairs BH(5, 35 + 25k) and BH(7 + 5k, 35 + 25k), where 7 + 5k is 
an odd prime. 

The following conjecture, which motivated this research, appears to gain some sup­
port from Corollary 3 and Tables I and II: 

Conjecture 1 If for 0 < k < g).. a locally maximal (g, k, A)-difference matrix with 
respect to Abelian group G of order g exists for which gcd(k, g)..) = 1, then GH(g,)..) 
does not exist. 

7 Conclusions 

Although the approaches of de Launey and the present author provide many in­
stances of non-existent GH(p, q), these results are by no means exhaustive of all 
possibilities. The methods usefully complement each other, and together show the 
number theoretic complexity of this non-existence problem. 
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