
Estimates on Strict Hall Exponents* 

Bolian Liu 

Department of Mathematics, South China Normal University 
Guangzhou 510631, P. R. China 

and 
Department of Computer Science, Guangdong Institute for Nationalities 

Guangzhou 510633, P. R. China 

Zhou Bo 

Department of Mathematics, South China Normal University 
Guangzhou 510631, P. R. China 

Abstract 

Let Bn be the set of all n by n Boolean matrices, and let H~ = {A E Bn : 
Ak is a Hall matrix for every sufficiently large integer k}. We provide 
upper estimates on the strict Hall exponents of microsymmetric matrices 
in H~; furthermore, we obtain the maximum value of the strict Hall 
exponents of symmetric matrices in H~. 

1 Introduction 

Let Bn be the set of all n by n matrices over the Boolean algebra {O, 1}. A matrix 
A in Bn is said to be a Hall matrix provided that there is a permutation matrix Q 
such that Q ::; A (entrywise order with ° ::; 1). 

In 1973, Schwarz [1] introduced the concept of Hall exponent: for A E Bn , if 
there is a positive integer k such that Ak is a Hall matrix, then the least such 
positive integer is called the Hall exponent of A, denoted by h(A). When they made 
a further study of Hall exponents in 1990, Brualdi and Liu [2] found that there exist 
A E Bn and integer m > h( A) such that Am is not a Hall matrix. Therefore they 
introduced the concept of the strict Hall exponent. 

For A E B n , if there is a positive integer k such that Ai is a Hall matrix for every 
integer i 2:: k, then the least such positive integer is called the strict Hall exponent 
of A, denoted by h*(A). 
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It should be noted that h(A) or h*(A) does not exist for some A E Bn. Let 

H~ : Ak is a Hall matrix for every sufficiently large integer k}. 

Then h*(A) exists if and only if A E H~, and h(A) exists if A E H~. 
A matrix A = (aij) E Bn is said to be microsymmetric if there is a pair i, j with 

i =I- j such that aij = aji = 1 (for such i and j , we call aij and aji a pair of symmetric 
ones of A); A = (aij) is said to be symmetric if aij = aji for all i, j. We denote 
the set of all microsymmetric matrices in H~ by M H~, and the set of all symmetric 
matrices in H~ by S H~. Clearly, S H~ C M S~. 

A matrix A E Bn is primitive provided that for some positive integer m, Am = I n, 
the all l's matrix in Bn. The set of primitive matrices in Bn is denoted by Pn. 

Recently, we proved that h*(A) ::; l zt J for A E Pn and n 2:: 2. (This was 
conjectured in [2]). This upper estimate seems, however, far from satisfactory for 
some special classes of matrices in Pn C H~. 

In the present paper, we provide upper estimates on the strict Hall exponents 
of matrices in M H~; furthermore we obtain the maximum value of the strict Hall 
exponents of matrices in S H~ . 

2 Preliminaries 

Recall that the matrix A is reducible provided that there is a permutation matrix 
P such that 

otherwise A is irreducible. 
The digraph of A = (aij) E Bn , D(A), is defined by D(A) = (V,E) where 

V = V D(A) {I, 2", " n} and the arc (i, j) E E = ED(A) if and only if aij = 1 
for all i, j. Thus loops are permitted in D(A), but multiple arcs are not allowed. 

It is well known that A E Bn is irreducible if and only if D(A) is strongly 
connected, and A E Bn is primitive if and only if D(A) is strongly connected and 
the greatest common divisor of the lengths of all cycles of D(A) is l. 

For an irreducible A E Bn , let R be a set of some distinct lengths of cycles of 
D(A). For i, j E V D(A), dR(i,j) denotes the length of the shortest walk from ito j 
meeting at least one cycle of each length in R, and d( i, j) denotes the distance from 
i to j , i.e., the length of the shortest path from i to j. 

For X ~ V D(A), let Rt(X) be the set of vertices of D(A) which can be reached 
by a walk of length t from a vertex in X. In particular, Ro(X) = X. It follows from 
Hall's theorem ([4]) that At is a Hall matrix if and only if IRt{X) I 2:: IXI for every 
nontrivial subset X of V D(A). 

We have 

Lemma 2.1 ([5]) Suppose A is an irreducible matrix in Bn and X ~ V D(A). 
Then for every positive integer t, 
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t 

I U Ri(X)1 ~ min{IXI + t, n}. 
i=O 

Let a, b be coprime positive integers. The Frobenius number ¢( a, b) is defined 
to be the least integer ¢ such that every integer m ~ ¢ can be expressed in the 
form xa + yb where x, yare nonnegative integers. It is well known that ¢(a, b) = 
(a - l)(b - 1). 

Note that En forms a finite multiplicative semigroup of order 2n2. Let A E En. 
The sequence of powers AI, A2, ... clearly forms a subsemigroup (A) of En, and 
there is a least positive integer k = k(A) such that Ak = Ak+t for some t > 0, and 
there is a least positive integer p = peA) such that Ak = Ak+p. We call the integer 
k = k(A) the index of A, and the integer p = p(A) the period of A. It should be 
noted that this definition of the index of a Boolean matrix is a little different from 
that in [6] where k(A) was permitted to be zero; however, they are the same for an 
irreducible Boolean matrix whose associated digraph is not a cycle of length n. It is 
well known that peA) equals the greatest common divisor of the distinct lengths of 
all the cycles of D(A) if A is irreducible. And it is easy to see that h*(A) ::; k(A) for 
A E H~. 

Let A E En with p(A) = p. For all i and j, kA (i, j) is defined to be the least 
positive integer k such that (Al+P)ij = (Al)ij for every integer l ~ k, and mA(i,j) is 
defined to be the least positive integer m such that (Aa+mp)ij = 1 for every integer 
a ~ O. It is easy to verify that 

and 
kA(i,j) = max{mA(i,j) - p+ 1, I}. 

3 Main Results 

Theorem 3.1 Let A E Pn n MH~, n ~ 2. Then h*(A) ::; 2n - 3. 

Proof. Since A E Pn n M H;, D(A) must contain a cycle C2 with length 2 and 
a cycle Cr with length r where r is odd. Let X ~ VD(A) with IXI = k, 1 ::; k < n. 
We will prove that IRt(X) I ~ k for t ~ 2n - 3. Note that this is obvious for k = 1. 
We assume k > 1. 

There exist x' EX, y' E V C2 such that 

d(x', y') = min d(x, y). 
xEX,yEVC2 

Therefore d( x', y') ::; n - k - 1. 

131 



There also exists z' E VCr such that 

and d(y', z') ::; n - r. 

d(y',z') = min d(y',z), 
zEVCr 

Setting R = {2, r}, we have 

dR(x', z') ::; d(x', y') + d(y', z') ::; n - k - 1 + n - r = 2n - k - r - l. 

By the definition of the Frobenius number, for every integer m 2: 2n - k - r - 1 + 
¢(2, r) = 2n - k - r - 1 + (r - 1) = 2n - k - 2, there is a walk from x' to z' with 
length m. Hence for t 2: (2n - k - 2) + k - 1 = 2n - 3, we have 

U::~Ra({z'}) ~ Rt({x'}). 

By Lemma 2.1, 
IRt(X) I 2: IRt({ x'}) I 

2: I U~:6 Ra ( {z'} ) I 
2: 1 + (k - 1) = k, k > l. 

Thus we have proved that h*(A) ::; 2n - 3. 
Note that A has at least two symmetric ones for A E M H~. We can generalize 

Theorem 3.1 to Theorem 3.2. 

Theorem 3.2 Suppose A E Pn n M H~J and there are exactly s rows in A con­
taining symmetric ones, 2 ::; s ::; n. Then h*(A) ::; 2n - s 1. 

Furthermore we have 

Theorem 3.3 Suppose A E M H~, A is irreducible, and there are exactly s rows 
in A containing symmetric ones, 2 ::; s ::; n. Then h*(A) ::; 2n - s - 1. 

Proof. By Theorem 3.2, we need only to prove h*(A) ::; 2n - s - 1 for irreducible 
but not primitive A E MH~. In this case p(A) = 2. For any vertices i, j E VD(A), 
there is a walk starting from vertex i to some vertex u of a cycle of length 2 of D(A) 
with length::; n - s; and vertex j can be reached by a walk starting from u with 
length::; n - 1. Hence for some positive integer m ::; n - s + n - 1 = 2n - s - 1 
and any integer a 2: 0, there is a walk from i to j with length m + 2a. Thus 
mA(i,j) ::; m::; 2n- s -1, and kA(i,j) ::; mA(i,j) - 2 -1 ::; 2n- s - 2 < 2n- s 1. 
N ow it follows that 

h*(A) ::; k(A) = m~x kA(i,j) < 2n - s 1, 
l:St,J:Sn 

as desired. 
By Theorem 3.3, we immediately have 

Theorem 3.4 Suppose A E MH~, n 2: 2 and A is irreducible. Then h*(A) ::; 
2n - 3. 
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Now we investigate the strict Hall exponents of symmetric matrices in H~ . We 
consider the primitive matrices first. 

Theorem 3.5 For n 2 3, we have 

max{ h'(A) : A E Pn n SH~} = { ~ _ i n is odd, 
n is even. 

Proof. Suppose A E Pn n SH~. Then all rows of A contain symmetric ones. By 
Theorem 3.2, We have h*(A) :::; n - 1. 

When n is even, we have Rn - 2 (X) ;2 X since A is symmetric. Hence IRn - 2 (X)1 2 
IXI holds for every X ~ VD(A). Combining with the fact that h*(A) :::; n - 1, we 
have h*(A) :::; n - 2. 

Therefore we have 

h*(A) :::; { n - 2, 
n-1, 

n is even, 
n is odd. 

In the following we are going to show that the above upper bound can be achieved 
for every n. 

If n is even, let 

1 

On/2xn/2 0 
1 

1 1 0 1 
AI= 1 0 

0 0 1 
1 1 nxn 

Clearly Al E Pn n SH~. It is easy to verify that 

1 0 

On/2xn/2 J 
1 0 

An- 3 -I - 1 1 0 1 1 
0 0 1 

J 
J 1 

Ar-3 has a % x (% + 1) zero submatrix with % + (% + 1) > n, so Ar-3 is not a Hall 
matrix. Thus h*(AI) 2 n - 2. But we have proved that h*(AI) :::; n - 2, so we have 
h*(Al) = n 2. 
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When n is odd, let 

O(n+l)/2x(n+l)/2 

1 

o 

It is easy to see that A2 E Pn n SH~ and 

1 

1 
1 0 1 

1 0 

o 

o 1 
1 1 nxn 

Hence A~-2 has a n!l x n!l zero submatrix, and it is not a Hall matrix. So h* (A2) 2: 
n -1. Note that h* (A) ::; n -1. We have h* (A) = n -1. The proof is now completed. 

Theorem 3.6 For n 2: 3, we have 

{ 
n 2 

max{h*(A): A E SH~} = n -1, n is even, 
n is odd. 

Proof. Suppose that A E SH~. By Lemma 3.5, we need only to prove 

n is even, 
n is odd 

for A E SH~\Pn' We divide the proof into two cases. 
Case 1: A is irreducible. It has been proved in [7] that k(A) ::; n - 2. Hence 

h* (A) ::; k(A) ::; n - 2. 
Case 2: A is reducible. Assume that AI, A2 , •• " At (t ~ 2) are the irreducible 

components of A. Let the order of Ai be ni for 1 ::; i ::; t. It is easy to see that 
h* (Ai) exists for every i since A E SH~. For 1 ::; i ::; t, it has been proved that 
h* (Ai) ::; ni - 1 if Ai is primitive in Theorem 3.5; and by a similar argument as in 
Case 1, h* (A) ::; ni 2 if Ai is not primitive. Hence 

h*(A) = maxh*(Ai) < maxni -1 < n -1 1 = n - 2. 
199 - l~i~t -

References 

[1] S. Schwarz, The semi group of fully indecomposable relations and Hall relations, 
Czech. Math. J., 23: 151-163 (1973) 

134 



[2] R. A. Brualdi, B. Liu, Hall exponents of Boolean matrices, Czech. Math. J., 40: 
659-670 (1990) 

[3] B. Zhou, B. Liu, On a conjecture about the strict Hall exponents of primitive 
Boolean matrices, Chinese Science Bulletin, 41: (1996) 1319-1320 

[4] L. Mirsky, Transversal Theory, Acdemic Press, New York (1971) 

[5] B. Liu, On fully indecomposable exponents for primitive Boolean matrices with 
symmetric ones, Linear and Multilinear Algebra, 31: 131-138 (1992) 

[6] J. Shao, Q. Li, The index set for the class of irreducible Boolean matrices with a 
given period, Linear and Multilinear Algebra, 22: 285-303 (1988) 

[7] J. Shao, Q. Li, On the index of maximum density for irreducible Boolean matrices, 
Discrete Appl. Math., 21: 147-156 (1988) 

(Received 2/3/98) 

135 




