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Abstract 

For a finite group G and a self-inverse subset S of G which does not 
contain the identity of G, let Cay (G, S) denote the Cayley graph of G with 
respect to 8. If, for all subsets 8, T ofG of size m, Cay(G, S) ~ Cay(G, T) 
implies 80. = T for some a E Aut(G), then G is said to have the m-CI 
property. In this paper we completely determine the positive integers m 
for which a cyclic group of prime-square order has the m-CI property. 

1 Introduction 

Let G be a finite group and set G# = G \ {I}. Let 8 be a self-inverse subset of G#, 
that is, 8 = 8-1 := {S-l I S E 8}. The Cayley graph Cay(G, 8) of G with respect 
to S is the graph r with vertex set vr = G and edge set Ef = {{a, b} I a, b E 
G, a-1b E 8}. 

For a finite group G, an element a of Aut(G) induces an isomorphism from 
Cay(G,8) to Cay(G, sa). However, it is of course possible that there exist a group 
G and subsets 8 and T of G# such that Cay(G, S) ~ Cay(G, T) but 8 is not 
conjugate under Aut(G) to T. A Cayley graph Cay(G,8) is called a CI-graph (CI 
stands for Cayley Invariant) of G if, for any subset T of G#, So. = T for some 
a E Aut(G) whenever Cay(G, S) ~ Cay(G, T). One long-standing open problem 
about Cayley graphs is to determine the groups G (or the types of Cayley graphs 
for a given group G) for which all Cayley graphs of G are CI-graphs. This is the 
so-called isomorphism problem of Cayley graphs, and has been widely studied (see, 
for example, [1, 2, 13, 14]). 
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A group G is said to have the m-CI property if all Cayley graphs of G of valency 
mare CI-graphs. Recently Praeger, Xu and the second author in [12] proposed to 
characterize finite groups with the m-CI property, and made a general investigation 
on the structure of Sylow subgroups of groups with the m-CI property for certain 
values of m. In particular, it was proved in [12, Theorem 1.3] that the 2-CI property 
implies the l-CI property. However, it was proved in [10] that the 3-CI property 
does not necessarily imply the 2-CI property. Further, it was proved that a finite 
nonabelian simple group G has the 2-CI property if and only if G = A5 or PSL(2, 8) 
(see [11, Theorem 1.3]), and G has the 3-CI property if and only if G = A5 (see [10]). 
For directed Cayley graphs, the so-called m-DCI property was defined similarly in 
[12], and some further results have been obtained in [7, 8, 9]. It seems very hard to 
obtain a "good" characterisation of arbitrary groups with the m-CI property. In this 
paper we focus on the groups of prime-square order. 

From the definition it easily follows that a subset S of G# is a CI-subset of G if 
and only if G# \ S is a CI-subset. Thus, for any positive integer m < IGI, G has the 
m-CI property if and only if G has the (IG#I - m)-CI property. So we shall always 
assume that m ::; The main result of this paper is the following theorem. 

Main Theorem Let G be a group of order p2 where p is a prime, and let m be a 
positive integer with 1 ::; m ::; 9. Then G has the m-CI property if and only if 
either G is elementary abelian, or one of the following holds: 

(1) p = 2,3, 

(2) m is odd, 

(3) [~] is odd, 

(4) m::; p - 1, 

(5) m = kp or kp + (p - 1) for some even positive integer k. 

2 Preliminaries 

This section quotes some preliminary results which will be used in the proof of the 
Main Theorem. First we have a criterion for a Cayley graph to be a CI-graph: 

Lemma 2.1 (Alspach and Parsons [1, Theorem 1], or Babai[2, Lemma 3.1]) Let r 
be a Cayley graph of a finite group G and let A be the automorphism group of r. 
Let G R denote the subgroup of A consisting of right multiplications g: x -+ xg by 
elements g E G. Then r is a CI-graph of G if and only if, for any T E Sym( G) with 
GR ::; A, there exists a E A such that Gn = GR' 

In the following, we shall use G itself to denote the group G R of right multiplica­
tions induced by element of G. The normalizer of G in Aut Cay(G, S) is often useful 
for characterizing Cay ( G, S). 
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Lemma 2.2 ([5, Lemma 2.1]) Let 0 be a finite group and 8 a subset of G#, let 
A = AutCay(O,8) and Aut(O,8) = {a E Aut(O) I SOt = S}. Then NA(O) = 
o )<l Aut( G, S), a semidirect product of 0 by Aut( 0, S). 

This property is specially useful for groups of prime-power order due to the fol­
lowing conclusion. 

Lemma 2.3 ([15, p.88]) Let H be a proper subgroup of a p-group 0 where p is a 
prime. Then Nc(H) > H. 

The final simple lemma gives some properties about subsets of a cyclic group. 

Lemma 2.4 ([8, Lemma 2.1]) Let 0 = (z) be a cyclic group of order n, and assume 
that i, m E {I, 2, ... , n - 2}. Suppose that {z, Z2, . .. , zm} = {Zi, Z2i, ... , zmi}. Then 
i = 1. 

The terminology and notation used in this paper are standard (see, for example, 
[3, 15]). In particular, for a group and an element 9 E 0, denote by IGI and o(g) the 
orders of 0 and g, respectively. For a graph r = (V, E), its complement r = (V, E) 
is the graph with vertex set V such that {a, b} E E if and only if {a, b} ~ E. The 
lexicographic product rdr2] of two graphs r l = (VI, E I ) and r2 = (112, E2) is the 
graph with vertex set Vi x 112 such that {(aI, a2), (b I , b2)} is an edge if and only if 
either {aI, bd E EI or al = bi and {a2' b2} E E2. For a positive integer n, Kn 
denotes the complete graph on n vertices. 

3 Proof of the Main Theorem 

In this section we prove the Main Theorem. For convenience, if Cay(O, 8) is a CI­
graph of G then we call the subset Sa CI-subset. For a group G and a pair of subsets 
S,T of G#, if Cay(G,S) ~ Cay(O,T) but 8 is not conjugate under Aut(O) to T, 
then we call {S, T} an NCI-pair of O. 

Proof of the Main Theorem: It is known that a group of prime-square order is 
either elementary abelian or cyclic. Assume that 0 is elementary abelian. Then by 
the result of Godsil [6], G has the m-CI property for all values of m. Thus in the 
following we assume that G is a cyclic group of order p2 where p is a prime. 

Suppose that none of conditions (1)-(5) listed in the theorem holds. (We shall 
construct various NCI-pairs for different cases.) Then p 2:: 5 and m = kp + j for 
some positive even integers k and j with j "# p - 1. Thus 2 ~ j ~ p - 3, and since 
m ~ p2;1, we have that 2 ~ k ~ ~. We will prove that G does not have the m-CI 
property. Let ko = ~ and jo = ~. Then 1 ~ ko ~ ~ and 1 ~ jo ~ ~. Let 0 = (a), 
and let 

Since p is odd, there exists an automorphism T of (aP) such that (aPr = a2P . Now 
So = To, and so r l := Cay( (aP ), 80) ~ Cay( (aP), To). If aP E To then a2hp = aP for 
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some h with 1 ::; h ::; jo or -1 ~ h ~ -jo. Thus a2hp- p = 1 and so p 12h - 1, which 

is a contradiction since Ihl ::; jo ::; ~. So aP ~ To. Similarly, a-P ~ To. Set 

{ 
8 - {-I ko -ko}( P) U 8 - a, a , ... , a ,a a 0, 

T - {-1 ko -ko}( P) U rp - a, a , ... , a ,a a .10. 

Let C := G/(aP), S := 8(aP)/(aP ) \ {I} and T := T(aP)/(aP) \ {I}. Then 8 = 
{a, .. . , a;k} = T. Let f2 = Cay(G, S) (= Cay(C, T)). Then Cay(G, 8) ~ f 2[fl] ~ 
Cay(G, T). Suppose that G has the m-CI property. Then there exists 0:' E Aut(G) 
mapping 8 to T. Since a E 8 we have aCi. E T, and since o(aCl.) = o(a) = p2, we 
have aCi. E {a,a-I, ... ,ako,a-ko}(aP). Thus aCi. = ai+hp for some integers i,h where 
1 ::; i ::; ko or -1 ~ i ~ -ko. Let a be the automorphism of C induced by 0:'. Then 
{ai,a- i , ••. ,akoi,a;-koi} = Eli = T = {a, a-I, ... ,ako,a-ko }. Let e be equal to 1 or 

1 such that ei is positive. Then 1 ::; ei ::; ko. We claim that {aci, a2ci , ... ,akoci } = 
{ - -2 -ko} S t th t th t {-ci -2ci -koci} n {--I --ko} -I­a, a , ... , a . uppose 0 e con rary a a, a .... , a a, ... , a r 
0. Then there exists an integer 1 with 1 < 1 ::; ko such that 1 ::; (l l)ci::; ko and 
lei> ko. Since ei ::; ko and ko ::; ~, we have lei = ei + (l - l)ei ::; 2ko ::; ~. It 
follows that a1ci E {a-I, ... , a-ko }. Thus we have that p - ko ::; lei < p - 1, and so 
ei = lei-(l-l)ei ~ (p-ko)-ko. Sinceei::; ko::;~, wehavep::; ei+2ko ::; 3(P,;1) , 

h· h . t d' t' Th £ {-ci -2ci -koci} {- -2 -ko} d b W lC IS a con ra IC IOn. ere ore, a ,a , ... , a = a, a , ... , a an y 
Lemma 2.4, ei == 1 (mod p). Since 1 ::; ei ::; ko < p, we have ei = 1, and so i = e. 
Consequently, (aP)CI.(ai+hp)p = (ac+hp)P = aCP . Therefore, since aCP ~ T, we have that 
(aP)O! E 8C1. \ T, which is a contradiction. 

Conversely, we need to prove that G has the m-CI property for the cases (1)-(5) 
listed in the theorem. If p = 2,3, then it follows from [4] that G has the m-CI 
property for 1 ::; m ::; 4. Thus assume that p ~ 5. If m is odd, then G does not 
have self-inverse Cayley subsets of size m, so G vacuously has the m-CI property. 
Thus we may assume that one of cases (3)-(5) holds. We need to prove that 8 is a 
CI-subset. Let f = Cay(G, 8) and A = Aut f, and let Al be the stabilizer of 1 in A. 
If p {IAII then G is a Sylow p-subgroup of A. By Sylow'S Theorem and Lemma 2.1, 

S is a CI-subset. Thus we may further assume that p IIAII. 
First assume that m < p. If (8) = G then p {,Ali, which is a contradiction. 

Thus (8) < G and (8) = (aP). By a result of Turner [16], 8 is a CI-subset of (aP). 

For any subset T of G# such that Cay(G, S) ~ Cay(G, T), we have (T) = (aP) and 
Cay( (aP), S) ~ Cay( (aP), T), and therefore, since 8 is a CI-subset of (aP ), there exists 
a E Aut( (aP)) satisfying 8C1. = T. Further, there exists f3 E Aut( G) such that the 
restriction of f3 to (aP ) is equal to 0:'. Hence S(3 = T and so 8 is a CI-subset of G. 

Now assume that either [r:] is odd, or m = kp or kp + (p - 1) for some even 

positive integer k. Let G = (a) (~ Zp2), and let 8 be a self-inverse subset of G# of 
size m. Our goal is to show that S is a CI-subset. Let f = Cay(G, S) and A = Aut f, 
and let Al be the stabilizer of 1 in A. If p {IAII then G is a Sylow p-subgroup of A. 
By Sylow'S Theorem and Lemma 2.1,8 is a CI-subset. 

Since p IIAII, a Sylow p-subgroup of A has order at least p3. By Sylow's The­
orem, there exists a Sylow p-subgroup P of A which contains G as a subgroup. 
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By Lemma 2.3, NA(G) 2: Np(G) > G. First we study the structure of S. From 
Lemma 2.2 it follows that there exists a E Aut( G) of order p such that SCi = S. 
It is easy to see that aCi = aHjp for some 1 ::; j ::; p 1. Thus for any in­
teger k, (ak)Ci = ak+kjp , so (ak)Ci = ak if and only if pi k, which is equivalent 

to ak E (aP). Therefore, a fixes every element of S of order p and fixes no el­
ements of S of order p2. Moreover, if ak E Sand (ak)Ci =I- ak then ak(aP) = 
ak(akjp ) = {ak,ak+kjp, ... ,ak+(P-1)kjp} = {ak,(ak)Ci, ... ,(ak)CiP-l} = (ak)(Ci) C S. 
Since S S-1, we also have a -k (aP) C S. Since a is of order p, every nontrivial 
(a)-orbit (on S) has size p, and since G has exactly p 1 elements of order p, it 
follows that [~] is even and there is a subset Q of G \ (aP) of size k such that if 
m = kp then S = Q(aP), and if m = kp + (p - 1) then S Q(aP) U (aP)#. 

Let T be a subset of G# such that Cay(G, S) ~ Cay(G, T). It follows from 
the arguments in the previous paragraph that if m kp then T = Q'(aP), and if 
m = kp + (p 1) then T = Qf (aP) U (aP)#, where Q' is a subset of G \ (aP) of size k. 
We want to prove that S is conjugate under Aut(G) to T. Let G = G/(aP ) and S = 
S(aP)/{aP) \ {I}, and let I" = Cay(G, S). It follows from the definition that ifm = kp 
then f ~ r[Kp]; if m = kp + (p - 1) then f ~ r[Kp). Thus A preserves the unique 
nontrivial imprimitive system {x(aP) I x E G} of Vf consisting of p blocks of size 
p. Similarly, setting f' = Cay(G, T), also Autf' has the unique imprimitive system 
{x(aP) I x E G}. Therefore, if p is an isomorphism from Cay(G, S) to Cay(G, T), 
then {x(aP) I x E G}P = {x{aP) I x E G}. Hence p induces an isomorphism from 
Cay(G, S) to Cay(G, T) where T = T{aP) / (aP) \ {I}. Since vI" is of size p, G is 
a Sylow p-subgroup of Aut r. All subgroups of Aut I' which act regularly on VI' 
are cyclic groups of order p and hence are conjugate by Sylow's Theorem. So by 
Lemma 2.1, S is a CI-subset ofG. Hence there exists T E Aut(G) such that S = T, 
so ar = a: for some integer r E {I, 2, ... ,p - I}. Write S = {a;il, a;i2, ... ,a;ik}, and 
then T S {cf 1T , cf2T, ... ,a;ikT}. Therefore, S = ail (aP) U ai2 (aP) U ... U aik (aP) 
and T ailT (aP) U ai2T (aP) U ... U aikT (aP). Since r is coprime to p, a -+ aT induces 
an automorphism (/ of G. Now SU = T, so S is a CI-subset of G. Therefore, G has 
the m-CI property. 0 
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