On isomorphisms of Cayley digraphs on dicyclic groups

Hai-Cheng Ma

Department of Mathematics
QingHai Nationalities College
XiNing 810007
P.R.China

Abstract

In this paper we prove that for any m € {1, 2, 3}, the dicyclic group By,
(n # 2) is an m-DCI group if and only if n is odd.

1. INTRODUCTION

Definition 1.1. Let G be a finite group and let S C G\ {1}. We define the Cayley
digraph X = X (G, S) of G with respect to S by

V(X) =G,
E(X)={(9,59) g€ G,s€S}.

It is well-known that any Cayley digraph X on G is vertex-transitive; X is
connected if and only if (S) = G, and X is undirected if and only if S~ = S.

Definition 1.2. Let G be a finite group and let S C G\ {1}. We call S'a CI-subset
of G, if, for any graph isomorphism X (G, S) = X(G,T), where T C G\ {1}, there
exists @ € Aut GG such that S¢ =T.

Definition 1.3. Let G be a finite group and m a positive integer. We call G an
m-DCI-group if every subset S of G\ {1} with |S| < m is a ClI-set. We call G an
m-CI-group if every subset S of G\ {1} with S=! = § and |S| < m is a Cl-subset.

Necessary and sufficient conditions have been found for abelian groups and di-
hedral groups to be m-DCl-groups, for m = 1,2,3 (see [1-5,8,10]). The purpose
of this paper is to discuss the same problem for dicyclic groups, Bs,. The group
By, is defined by

By ={(a,b|a® =1,b> =a", b lab=a"1), (n >2).

If n = 2, By, is isomorphic to the quaternion group Qg of order 8, and Qg is a
3-DCI-group, [9]. Our main result is
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Theorem 1.4. The finite dicyclic group B, (n # 2) is an m-DCIl-group for
m =1,2,3 if and only if n is odd.

The notation and terminology used in this paper are standard in general; the
reader is referred to [6,7] when necessary. Let X and Y be two isomorphic Cayley
digraphs on G. We use I(X,Y) to denote the set of all isomorphisms ¢ from
X to Y with 12 = 1. For any u € V(X) and each positive integer i, we write
Xi(u) = {v e V(X) | d(u,v) = i}, where d(u, v) is the distance from u to v.

2. PRELIMINARY RESULTS

In this section we shall prove several lemmas which will be used in the proof of
Theorem 1.4.

Lemma 2.1. Let G be a finite group and S, T subsets of G \ {1} with X =
X(G,S)=EX(GT)=Y.
(i) If there exist s € S, t € T such that s® =t holds for all ¢ € I(X,Y’), then
1(X,Y) C I(X(G, 8\ {s}), X (G, T\ {#})).
(ii) If there exists + € G such that z® = z holds for all ¢ € I(X,Y), then
I(X,Y) C I(X(G,z8%\ {1}), X(G,zT? \ {1})), where z5* = {zs;s; |
8i,8; € S} and zT? = {atit; | t;,t; € T}.

Proof. We use R(g) to denote the map from G to G defined by z — zg.

(i) For any g € G, since R(g)¢R((9%))~') € I(X,Y), by assumption (i) we
obtain that sB@9R(9*)™) = ¢, 50 that (sg)? = tg®. So, for any g1, g2 € G,
g2 = sg1 if and only if gg = (sg1)? = tg‘lb. That is, (g1,92) € E(X(G,
S\ {s})) if and only if (47, ¢) € E(X(G,T\ {t})).

(i) Asin (i), with s = ¢ = z, we have (zg)? = zg? for any g € G. If (g1,92) €
E(X(G,z5%\ {1})), then there exist s;,s; € S such that go = zs;5;91
and zs;s; # 1, and so gf = (7s;5;01)% = z(si8591)% = xtktggf, where
te,te € T, and mtit, # 1. Hence (g9, 9%) € B(X(G,zT?\ {1})). O

Lemma 2.2. ([10])

(i) Form =1, 2, 3, the finite cyclic group Z is an m-DCI group if 41 k.
(ii) Any finite cyclic group Zy is a 4-DCI group.

Lemma 2.3. For any m € Aut{a) and for any integer k, define the mapping
7' ¢ Byn — Bayn by

@)™ = (a*)"(a*b)!, (i=0,1,...,2n—1, j=0,1).

Then ©' € Aut By,.

A finite group G is said to be homogeneous if for any two isomorphic subgroups
H and K of G and any isomorphism ¢ from H to K, o can be extended to an
automorphism a of G. Obviously, the finite cyclic group Zx is homogeneous.
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Lemma 2.4. The finite dicyclic group By, is homogeneous if 2 { n.

Proof. Let H, K be two isomorphic subgroups of By, and let o be an isomorphism
from H to K.

Case 1. H < {(a). Since |H| = |K| and 41 |H|, K < (a). The conclusion follows
from Lemma 2.3 and the fact that the cyclic group is homogeneous.

Case 2. HN{a)b# 0. Then K N{a)b 5 0. Since |H : HN{(a)| = |K : KN{a)| =2,
there are i, j € {0,1,...,2n — 1} such that H = (HN(a),a'd), K = (K N{(a),a’d),
and (a*b)? = a’b. Furthermore, (HN(a))’ = KN{a). Thus there exists 7 € Aut (a)
such that 7|gn() = 0lHn(e). By Lemma 2.3, there exists 7’ € Aut By, such that

7'|(ay = 7 and (aib)™ = a’b. Obviously, 7’ is an extension of o to Buy. O

3. ProoOF OF THEOREM 1.4

We shall discuss, respectively, the cases m = 1, 2, 3. Theorem 1.4 is proved by
Lemmas 3.1, 3.2 and 3.4. Throughout this section, By, is assumed to be a fixed
finite dicyclic group.

Lemma 3.1. By, (n # 2) is a 1-DCI-group if and only if n is odd.

Proof. “only if”. Assume 2 | n. Then o(a?) = 4, s0 X (Buan, {a?}) & X (Bun, {b}).
Since n # 2, (a?) is a characteristic subgroup of Bgy,. Thus {a%} is not a Cl-subset
of By,, which contradicts the fact that By, is a 1-DCI group.

“if”. This is trivial by Lemma 2.4. ]

Lemma 3.2. By, (n # 2) is a 2-DCI-group if and only if n is odd.

Proof. By Lemma 3.1, we need only prove that if 21 n, S C By, \ {1} and |S]| =2,
then S is a ClI-subset of Byy,.

Assume X = X (Bay, S) 2 X(Ban, T) =Y.

Let S = {a",z}, where © € By, \ {1}. There are just one directed edge and
one undirected edge starting from every vertex of X (Byp, S), s0 we can assert that
T = {a™,y}. If we delete all undirected edges from X (B, S) and X (Bn,T), we
obtain that X (Bun, {r}) & X (B, {y}). By Lemma 3.1 there exists o € Aut By,
such that £° = y. Obviously, S = T. Thus we shall assume that S # {a", z}.
Case 1. |SN{a)| = 2. Since [(S)| = |(T)| and 4 1 |{S)|, |T N (a)| = 2. By Lemmas
2.2 and 2.3, S is a CI subset of By,.

Case 2. |SN {a)] = 0. By Lemma 2.3, without loss of generality, we may assume
that S = {b,a’b}. Since |X;1(b) N X1(a’d)| = [{a"}| = 1, we can assert that
IT N (a)| = 0, and we may also assume that T = {b,a’b}. Clearly, (a™)? = a”
for all ¢ € I((X,Y). By Lemma 2.1(ii), we obtain that X (Bun,a™S?\ {1}) =
X(Bgn,a™T? \ {1}). Thus X ({a), {a*'}) & X((a), {a*7}). By Lemma 2.2, there
exists # € Aut (a) such that {a**}™ = {a*7}. We apply Lemma 2.3, with k = 1 if
()™ = a or k = j if (a®)™ = a™J. In either case, we obtain a map 7’ € Aut By,
such that S™ =T.

Case 3. |SN (a)| = 1. From the above analysis we may assume that S = {b,a’}
and T = {b,a?} and, since |(S)| = |(T)|, o(a?) = o(a?). So there exists o € Aut By,
such that S7 =T. O
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Lemma 3.3. ([8]). If X(Zx,S) & X (Zk,T), where S = {£i,+j,£(i —j)}, T =
{+u,+v,+(u—v)}, and |S| = |T| = 6, then there is an automorphism 7 € Aut Zy,
such that S™ =T.

Remark. [8] requires that k¥ be odd. However, the proof given in [8] does not
need this restriction.

Lemma 3.4. By, (n # 2) is a 3-DCI-group if and only if n is odd.

Proof. By Lemma 3.2, we need only prove that if 24 n, S C Bg, \ {1} and |S] =3,
then S is a Cl-subset of By,.

Assume X = X(Byn,S) 2 X(B4, T) =Y.

Let S = {a",z,y}, where z,y € By, \ {1}. It is easy to see that ™ € T'. Assume
that T = {a™,u,v}. If z,y € (a), it is easy to see that S is a Cl-subset of Byy.

If  # y~1, it is obvious that (a®)? = a™ for all ¢ € I(X,Y).

If z =y~ = a'b, since Xp(1) N X, (1) = {a"}, (a")? = a" for all ¢ € I(X,Y).

By Lemma 2.1(i), we obtain X (Ban, {z,y}) = X (B4n, {u,v}). By Lemma 3.2,
there exists o € Aut By, such that {z,y}° = {u,v}. Obviously, §° =T. Thus we
shall suppose that S # {a™,z,y} in the following. Now we discuss, respectively,
[SN{a)]=0,1, 2o0r 3.

Case 1. |S N (a)| = 3. By the same argument as in Case 1 of Lemma 3.2, S is a
Cl-subset of Byy,.
Case 2. |S N {a)| = 2. Without loss of generality, we may assume that § =
{b,at,a’}.
(i) First we verify that there exists a fixed ¢ € T' such that b® = ¢, for all
¢ € I(X,Y). This is obvious if a* = a™7. Assume a® # a=J. We consider
X,(1) = {a%,a% ,a*t7 a", a'b,a’b,a”*h,ab}. Then 7 < |X(1)| < 8.
If th(l)! = 8, since ;Xl(ai) ﬁXl(aj)! =1, ‘Xl(b) ﬂXl(ai)[ = le(b) N
Xi(a?)| = 0.
If ‘XQ(].){ = 7, since Xz(ai) N Xz(aj) n Xl(l) = {b}, Xz(ai) N Xz(b) n
X1(1) = Xa(a?) N X2(b) N X1 (1) = 0.
(ii) Secondly, by Lemma 2.1(i), we obtain X (Ban, {b}) = X(Byn, {t}). Thus,
by Lemma 3.2, |T'N {a)| = 2. We can also assume that T = {b,a",a"} and
b¢ = bforall ¢ € I(X,Y). So we obtain X ((a), {a?,a’}) & X ({(a), {a*,a"}).
Hence, by Lemmas 2.2 and 2.3, we obtain that S is a Cl-subset of Byy.
Case 3. |Sn(a)] = 0. Assume S = {b,a’d,a’b}. Since |X1(b) N X1(a’b) N
X1(a’b)| = [{a"}| = 1, we deduce that |T'N (a)| = 0, and we can assume that T' =
{b,a"b,a"b}. Clearly, (a™)® = a™ for all ¢ € I(X,Y). By Lemma 2.1(ii), we obtain
X (Bun, {a**, a*7,a%0-0}) = X(Bgy, {a**,at?,a*®"")}). Hence X((a),{a*",
a*i, a9}y & X((a), {a**, a®?, 0@ ?}). If |{a*?, a?d, ¢t (D} = 2 or 4, by
Lemma 2,2 there exists 7 € Aut (a) such that {a** a*7, a*(-D}" = {a*¥,a*?,
a*(®=?)}. So the conclusion is immediate.

Now suppose |{a*?,a*, a*(=9)}| = 6. By Lemma 3.3. there exists 7 € Aut (a)
such that {a*?,a* aF(-N}7™ = {a*¥ a*?, ¢t~} Without loss of generality,
we may assume (a*)™ = a*. Then (a=%)™ =a™%.

(1) If (o)™ = a77, then 2u = 0 or 2v = 0 (mod 2n), which contradicts the
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fact that |[{a*?, a7, a*(-9}| = 6.
(2) If (o)™ = =), we can get a sinilar contradiction.
(3) If (a?)™ = a?, it is obvious that S is a Cl-subset of Byp,.
(4) If (a))™ = a®=¥), by Lemma 2.3 there exists 7' € Aut By, such that
b =a®b and (a™)™ = [(@™)"]"L. So ST =T.
Case 4. |SN(a)| = 1. By the above analysis, we get immediately that [T'N{a)| = 1.
Assume S = {b,a’b,a’} and T = {b,a"b,a’} (j # n, v # n).
(i) First we verify that (a?)? = a for all ¢ € I(X,Y). This is obvious if
b= (a’b)~!. Assume b # (a’h)~!. We consider

X5(1) = {a¥,a", a0, a7b, a7 b, a*tIb, a*=Ib}.

Then 7 < | X5(1)] < 8.

Suppose | X(1)| = 8. Since |X1(b) N X1(a'd)| = 1, | X1(b) N Xa(a?)| =
| X1 (afd) N X1(a%)| = 0.

Suppose |X2(1)] = 7. Then exactly one of the following congruence
formulae holds:

i+n=24 —i+n=2j§ 1+2j=00r —i+2j =0 (mod2n).

(1) If i +n = 25 or —i +n = 2§ (mod2n), then |X1(1) N Xz(af)| =
1{b,a}] = 2, | X1(1) N X2(b)] < 1 and |X1(1) N X2(a’b)| < 1, so the
result follows.

(2) Ifi+2j = 0 or —i+2j = 0 (mod 2n), then |X;(1)NX5(1)| = |{b, a’b}|
and the result follows.

(ii) Secondly, since (a™)? = a™ for all ¢ € I(X,Y’), by Lemma 2.1(i) for all ¢ €
I(X,Y) we have ¢ € I(X(Ban,a™S'* \ {1}), X (Byn, a™T"? \ {1})), where
§" = {b,a’b}, T' = {b,a"b}, and hence ¢ € I(X(Bsn,{a’,a™*}), X (Bsn,
fa%,a=). |

On the other hand, from the proof of Lemma 2.1(i), (a’g)? = a’g?
holds for any g € Byn. So it is easy to show that X (B, {a%,a% a’}) &
X (Bun, {a*,a"*,a"}), and so X ((a}, {a*,a™% a’}) = X ((a), {a*,a™¥,a"}).
By Lemma 2.2, there exists 7 € Aut {a) such that {a**}™ = {a*“} and
(a?)™ = a¥. We apply Lemma 2.3, with k£ = 1 if (¢*)™ = a% or k = u
if (¢*)™ = a~*. In either event we obtain a map n’ € Aut By, such that
S —T. 0

It is easy to see that By, is a 1-Cl-group for any n > 2. From the above Lemmas
we have the following:

Corollary 3.5. By, (n # 2) is an m-Cl-group, m = 2, 3 if and only if n is odd.
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