
SINGLE CHANGE NEIGHBOR DESIGNS 

R.L. CONSTABLE 

Mathematical Institute, University of St. Andrews, 
North Haugh, St. Andrews, Fife KY16 9SS, Scotland 

D.A. PREECE 

Institute of Mathematics and Statistics, Cornwallis Building, 
The University, Canterbury, Kent CT2 7NF, England 

N. PHILLIPS 

Department of Computer Science, Southern Illinois University, 
Carbondale, IL 62901, USA 

T.D. PORTER1 AND W.D. WALLIS 

Department of Mathematics, Southern Illinois University, 
Carbondale, IL 62901, USA 

In honour of Albert Leon Whiteman's eightieth birthday 

Abstract. A singl~ change neighbor design SCN(v, k) is a way of 
selecting a sequence of cycles of length k from a complete graph on v 

vertices with the properties: any cycle is derived from the preceding 
one by changing one vertex; and every· edge is covered in at least 
one cycle. Some properties of these designs are investigated. In 
particular, designs with the smallest possible number of cycles are 
constructed for all v when k 4. 

1. Introduction. 
We shall define a general block design (V, B) with parameters (v, k) to consist 

of a v-set V together with a family B of subsets of size k (called blocks) of V. A 
covering design of index .\ is a block design such that, given two members x and y 

of V, there are at least .\ blocks in B which contain {x,y}. A general discussion 
of is found in [1]. 

Single-change covering designs are discussed, for example in [3]. A single-change 
covering design SC( v, k) consists of a covering design of index 1 with parameters 
(v,k), together with an ordering B = (B 1 ,B21 •• ,Bb) of the block-set B, such 
that for 1 ::; i < b, Bi+l \Bi has exactly one element. For practical purposes it is 
desirable to minimize the number b of blocks in an SC( v, k), which we shall call 
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the size of the design. 
A block design can be defined in graph-theoretic terms. If the graph 

on n vertices is denoted K n ) then the set V can be interpreted as the vertex-set of 
a K v ) and the blocks as cliques Kk in that Kv. A covering of index 1 is a 
clique covering of Kv with all cliques of size k. 

Cliques are the appropriate data structures in experiments where some k objects 
can be treated simultaneously in one instance of the experiment, and every pair 
among the k objects interact to the same degree. In other experiments, other data 
structures are appropriate. We wish to consider neighbor designs, in which the 
appropriate data structure is a cycle. For example, in bacteriological expe:rm[lel1ts 
cultures are sometimes grown around the rim of a circular plate; adjacent cultures 
interact, but not others on the same For a discussion of neighbor 
and further references, see 

We define a single change neighbor design with parameters (v, k) 1 or S C N (v, k), 

to be an ordered list of cycles C1 , C2 , •. , Cb of length k chosen from a complete 
graph Kv on v vertices, with the following properties: 

(i) every of the Kv occurs in at least one of the 
(ii) For 1 i b, can be obtained from Ci by one vertex by a 

different vertex of Kv. 
If C i +1 is formed replacing vertex x in by vertex y, we say that x is introduced, 
and y is dropped, in CH1 . All elements of C 1 are introduced in C 1 . 

vVe can always assume that k 3, that cycles are defined. When k 
SCN(v,k) just an SC(v,k), because a is a 
designs are studied in [3], and the spectrum of sizes for which there exists an 
SC(v, 3) is completely determined there. So we shall concentrate on the cases with 
k ~ 4. In that case it is obvious that v k + 1 is a necessary condition for the 
existence of an SCN(v, k). 

Several examples of SC N s are presented in Table and will be used later. 
For convenience each cycle is represented as a column of an array. In order to 
better indicate the structure, we only show an element when it is introduced; thus 
the columns 

1 
2 
3 
4 5 

represent the two cycles (1,2,3,4) and (1,2,3,5). 

2. Elementary Lower Bounds. 
Without loss of generality, suppose the first two blocks of an SCN(v,k) are 

C 1 = (1,2, ... ,k -1,k) and C2 = (1,2, ... ,k -1,k + 1). Then C 1 contains the k 
edges (1,2), (2,3), ... , (k, 1), and C2 contains some edges which are in C1 and also 
(k - 1, k + 1) and (k + 1,1). In general, CH1 can cover at most two edges which 
were not in any of the earlier cycles in the design; so an S C N of size b can cover 
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at most k + 2( b 1) edges. So we must have 

(
v
2

) k + 2(b 1), 

or 

- 2k +4 

Since b must be an integer, we have: 

Lemma 1. If an SeN(v,k) has size b) then 

(2.1 ) 

A design which attains the minimum size, so that (2.1) is an equality, is called 
economical. If v and k are such that v( vI) - 2k + 4 is divisible by 4, we say case 
(v, k) is tight. An economical SeN in a tight case is called a tight seN. 

Lemma 2. If k is even then case (v, k) is tight if and only if v == ° or 1 (mod 4). 

If k is odd then case (v, k) is tight if and only if v 2 or 3 (mod 4). 

3. Small Cases. 

We have investigated small single-change neighbor designs with k < v 10, by 
hand and by computer. Table 3.1 lists the economical value of b for each v and k, 
as given by Lemma 1. Tight cases are denoted by asterisks. 

In every case where v k + 1, it was found that the economical design did not 
exist. In fact, there was no se N(lO, 9) with 20 blocks, and this is the only case 
in which the smallest existing design was found to have two blocks more than the 
number calculated for an economical design. So the sizes of possible designs with 
k < v 10 are as shown in Table 3.2. Examples of the designs are given in Table 
3.3 (see pages 252, 253). 

In view of the non-existence of an economical se N(lO, 9), we were inter­
ested to know whether there is an economical se N(ll, 9). Such a design exists. 
Three designs on more than ten elements are needed in Section 4 below; they are 
se N(ll, 4), se N(12, 4) and se N(13, 4). Examples of these are given in Table 
3.4 (see page 254). 
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k k 
v 4 5 6 7 8 9 v 4 5 6 7 8 9 
5 4* 5 5 
6 7 6* 6 7 7 
7 10 9* 9 7 10 10 10 
8 13* 13 12* 12 S 13 13 13 13 
9 17* 17 16* 16 15* 9 17 17 16 16 16 

10 22 21* 21 20* 20 19* 10 22 21 21 20 20 21 

Sizes of economical Smallest designs 
TABLE 3.1 TABLE 3.2 

4. The Case SCN(v,4). 
We have the following extension on v for an economical SC N( v, 4). 

Lemma 3. A n economical SCN(v,4) can be extended to an economical 
SCN(v + 8q,4) for all q O. 

Proof. Suppose there exists an SCN(v,4) with b cycles C1 ,C21 ".,Cb) based 
on a v-set S of symbols. We show how to construct an SCN(v + 8,4) based on 
S U {1,2,3,4,5,6,7,S} with b + 4v + 14 cycles. From (2.1), if the original design 
was economical, the new design will also be economical. Repeated application of 
this construction proves the Lemma. 

The first b cycles will be , C 2 ) ., Cb. Suppose Cb (w, x, y, z). Then the next 
four cycles are (l,x,y,z), (1,x,3,z), (1,2,3,z), (1,2,3,4). There is an economical 
SC N(S, 4) with first cycle (1,2,3,4) and last (thirteenth) cycle (8, 7, Table 
3.3; cycles b+4 to b+16 will be the thirteen cycles of that design. Then the sequence 
from block b + 16 onward is 

8 y y y y y 
7 7 7 7 2 2 
33xPwww 
666 664 

y y y y 
2 5 5 5 

P x x x P w 

y y 
1 1 
w w Q 

448 8 8 3 

where P denotes the sequence of v - 3 cycles obtained by replacing the third entry 
successively with members of S\ {w, x, y}, and Q is similar but only members of 
S\ {w, x, y, z} are used. 

It will be seen that the first sixteen new blocks cover all pairs with both members 
in {1,2,3,4,5,6, 7,8}, and also (l,x), (3,x), (l,z), (3,z). The other blocks cover 
the remaining pairs with one member in S. The total number of cycles is 

as required. 

b + 16 + 11 + 3(v 3) + v - 4 

= b + 4v + 14, 
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Theorem. There exists an economical SCN(v,4) for each v 6. 

Proof. This is an immediate consequence of Lemma 3, and the economical cases 
of SCN(v,4) for v 6,7, ... ,13 in Tables 3.3 and 3.4 (which were con­
structed by computer). 

5. Some extensions. 
Several ways of extending the results of this paper present themselves. Some are 

obvious for example, can one always construct an economical SC N( v,5)? We 
shall elaborate on four topics. 

(1) Does there ever exist a tight economical S C N (k + 1, k )? None has yet been 
constructed. An exhaustive search shows that no economical S C N (k 1, k) exists 
for k < 10. We recently constructed an economical SCN(11, 10) (see Table 3.4), 
but this case is not tight. This is the limit of our knowledge. 

(2) Isomorphism. We would call two different SC N( v, k) isomorphic if one can 
be obtained from the other by a permutation of elements. For given v and k, 
what can be said about the number of equivalence classes under isomorphism? In 
particular, one can ask whether a given design is isomorphic to the one derived by 
reversing the order of its blocks - starting with the last block and proceeding to the 
first. The 5 (5,4) design in Table 3.3 has this property. We expect this to be a 
rare occurrence; we conjecture that the 5 - (5,4) design is the only "best-possible" 
design with this property. 

(3) Some of the tabulated designs have a "fixed" element which is never dropped. 
Examples include the 5-(5,4), 7-(6,4), 10-(7,4), 13-(8,4) and 13-(8,5) designs of 
Table 3.3. A computation shows that there is a design with a fixed elelnent in all 
the "best-possible" cases with v < 11 except for the case v 10, k = 4 which is 
still undecided. What are the conditions for a fixed-element design to be possible? 
The 5-(5,4), 7-(6,4) and 10-(7,4) designs of Table 3.3 all in fact have two fixed 
elements. This never happens in larger economical designs with k 4: if elements 1 
and 2 are fixed, then as we go through all the blocks the remaining pair of elements 
must run through all pairs from {3, 4, ... , v}, and there are (v - 2)( v - 3)/2 such 
pairs; when v > 7 this is greater than (v(v - 1) - 2)/4. 

(4) In some designs, such as the 5-(5,4),7-(6,4), 10-(7,4), 7-(6,5) and 13-(8,5) of 
Table 3.3, all but one of the elements in the last block are also in the first block. No 
13-{8,4) design of this kind exists. What are the conditions for this to be possible? 
If the conditions are satisfied for a particular parameter-set, computation shows 
that quite frequently there are at least two designs for that parameter-set, one 
having first and last block that cover just k + 1 elements and the other not. What 
are the precise conditions for this to happen? In the 5-(5,4) and 10-(7,4) designs, 
transition from the last to the first block can be made by a single change. We 
conjecture that this never happens in larger economical designs. 
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lAHLJ:: 0.0 

Examples of small designs. T stands for 10. 

b (v, k) denotes an SCN(v, k) with b blocks. 

1 
2 2 2 
3 4 5 3 4 5 6 3 4 5 6 7 
4 5 3 4 5 6 3 4 5 6 3 7 4 

5-(5,4) 7-(6,4) 10-(7,4) 

4 6 2 5 4 8 9 8 
2 7 2 3 4 5 
3 3 4 8 5 6 2 
4 5 8 6 4 6 7 6 9 

13-(8,4) 17-(9,4) 

9 7 5 
2 8 T 
3 6 4 3 2 8 

5 7 2 3 4 9 2 8 7 
22-(10,4) 

3 
2 4 2 1 . 4 
3 2 3 5 4 7 3 5 6 2 
4 5 6 4 5 7 2 4 5 6 7 8 
5 6 3 5 6 5 6 7 8 3 

7-(6,5) 10-(7,5) 13-(8,5) 

2 3 
3 5 7 9 8 
4 5 6 7 8 2 
5 6 7 8 9 6 4 

17-(9,5) 

2 3 
3 6 8 5 7 8 9 
4 5 3 7 8 9 6 2 
5 6 7 8 9 T 4 

21-( 10,5) 

1 4 3 4 3 
2 6 2 
3 6 7 3 5 
4 3 2 4 6 5 7 
5 5 6 7 2 
6 7 1 6 7 8 

10-(7,6) 13-(8,6) 
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1 . . 8 

2 . 3 . . 3 4 . 

3 6 3 4 9 T 7 9 
4 . 7 . 4 . 7 8 T 7 6 

6 . 8 . 2 4 5 6 3 

6 7 8 . 9 .. 1 2 6 7 8 9 T . 5 " 

16-(9,6) 21-(10,6) 

3 
2 8 6 2 5 6 
3 8 4 3 5 4 
4 7 4 5 9 
5 2 5 8 2 
6 5 3 8 6 7 6 8 
7 5 7 8 9 4 3 

13-(8,7) 16-(9,7) 

1 3 
2 3 4 6 
3 8 2 4 
4 7 T 
5 9 
6 7 8 5 3 2 
7 8 9 T 5 

20-(10,7) 

2 2 
2 3 4 2 4 
3 8 3 8 
4 5 4 5 3 
5 7 2 9 5 9 2 7 
6 6 T 
7 8 4 2 3 7 8 4 3 6 
8 9 7 8 9 7 6 7 9 

16-(9,8) 20-(10,8) 

8 
2 4 
3 9 T 5 
4 9 
5 6 3 
6 8 2 3 T 
7 
8 9 5 4 
9 T 3 2 

21-(10,9) 
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TABLE 3.4 

Five important examples (T, E, D, R stand for ten, eleven, twelve, thirteen). 

2 5 4 
2 8 
3 6 
4 7 3 T E 
5 3 
6 2 9 
7 9 2 4 2 
8 9 T 7 
9 T E 

24-(11,9) 

E 5 7 
2 3 E 
3 5 6 7 4 9 2 3 8 4 6 
4 5 6 7 8 E 9 6 5 7 9 5 

27-(11,4) 

D 6 5 8 
2 3 E 
3 5 6 7 8 4 T 2 3 9 4 7 
4 5 6 7 8 9 D T 6 5 7 8 T D 5 

32-(12,4) 

R· 6 9 7 

3 D 
3 5 6 7 8 9 4 E 3 T 4 8 

456 7 8 9 T R E 6 5 789 E 7 8 6 E 

38-(13,4) 

2 3 8 9 
3 6 2 
4 E 
5 9 E 8 
6 9 E 3 5 
7 3 
8 T 
9 T 2 4 
T E 6 5 4 7 

24-(11,10) 
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