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A graph G is said to have property P(m,n,k) if for any disjoint 

sets A and B of vertices of G with IAI = m and IBI = n there exist at 

least k other vertices, each of which is adjacent to every vertex of A 

but not adjacent to any vertex of B. We know that almost all graphs 

have property P(m,n.k). However, almost no graphs have been 

constructed. In this paper. we construct classes of graphs having 

property P(l,n,k). For the case m, n ~ 2, the problem of constructing 

graphs with the property P(m,n,k) seems difficult, with the only known 

examples being Paley graphs. 

1. INTRODUCTION 

For our purposes graphs are finite, loopless and have no multiple 

edges. For the most part our notation and terminology follows that of 

Bondy and Murty [8]. Thus G is a graph with vertex set Y(G), edge set 

E(G), v(G) vertices, c(G) edges, minimum degree o(G) and maximum degree 

6(G). However, we denote the complement of G by G. 

A graph G is said to have property P(m,n,k) if for any disjoint 
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sets A and B of vertices of G with IAI = m and IBI = n there exist at 

least k other vertices, each of which is adjacent to every vertex of A 

but not adjacent to any vertex of B. The class of graphs having 

property P(m,n,k) is denoted by ~(m,n,k). Observe that if G e 

~(m,n,k), then G e ~(n,m,k). The cycle C
v 

of length v is a member of 

~(1,1,1) for every v ~ 5. The well known Petersen graph is a member of 

~(1,Z,1) and also of ~(1,l,Z). Despite these relatively simple 

examples few members of ~(m,n,k) have been found. The class ~(m,n,k) 

has been studied by: Ananchuen and Caccetta [Z, 3]; Blass et. al. [5]; 

Blass and Harary [6]; Exoo [11]; Exoo and Harary [1Z, 13]. In 

addi tion, some variations of the above adjacency property have been 

studied by: Ananchuen and Caccetta [4]; Alspach et. al. [1]; Bollobas 

[7]; Caccetta et. al. [9] and Heinrich [14]. 

Blass and Harary [6] established, using probabilistic methods, 

that almost all graphs have property P(n,n,1). From this it is not too 

difficult to show that almost all graphs have property P(m,n,k). 

Despite this result, few graphs have been constructed which exhibit the 

property P(m,n,k). An important graph in the study of the class 

~(m,n,k) is the so called Paley graph G 
q defined as follows. Let 

q = l(mod 4) be a prime power. The vertices of G are the elements of q 

the finite field f. Two vertices a and b are adjacent if and only if 
q 

their difference is a quadratic residue, that is a - b = y2 for some 

y e f 
q 

For a prime p = 1(mod 4), Blass, Exoo and Harary [5] showed that 

G e ~(n,n,1) for p > n2z'm. In [3] we improved this result by p 

showing that for a prime power q = 1 (mod 4) , G e §'(n,n,k) for every q 

q > { (Zn - 3) 2 2n- 1 
+ Z} v'q + (n + Zk - 1 )Z2n-l - Zn2 

- 1. Further, we 
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proved that G E ~(m.n.k) for every 
q 

q > {(t - 3)2t - 1 + 2} vq + (t + 2k - 1)2t - 1 
- 1, 

where t = m + n; and G E ~(1,2.k) for every q > 
q 

Computational results were also presented to determine the smallest 

Paley graphs in ~(2,2,k) for small k. 

In this paper, we will construct classes of graphs having property 

P(1,n,k). These classes include: the cubes; "generalized" Exoo-Harary 

graphs; "generalized" Petersen graphs; and "generalized" Hoffman -

Singleton graphs. These graphs are described in Sections 2 and 3. 

2. THE CLASS ~(l,n.k). n + k s 4 

In this section we construct classes of graphs satisfying property 

P(1,n,k), n + k s 4. We begin by stating the following two lemmas. 

Lemma. 2.1: (Ananchuen and Caccetta [2]) 

For 1 s t s n, ~(m,n.k) S;; ~(m,n - i,k + i). o 

Lemma. 2.2: (Exoo [11]) 

If G is a graph having girth at least 5 and o(G) ~ n + k, then G E 

~(1.n,k). 0 

The work to follow makes use of the following notation. For a 

graph G we denote the neighbour set of a vertex u by N(u), and 

non-neighbour set of u by N(u). 

denote by the set of vertices of 

VCG)\.{U'V
1

'V
2

' ... ,vn} which are adjacent to u but not adjacent to any 

1 sis n. 
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Exoo and Harary [13] constructed small graphs in the class 

§'(1,n,1). In particular. they proved that the graphs G
1 

and G 
2 

displayed in Figures 2.1 are smallest order graphs of girth 3 in the 

classes §'(1,2,1) and §'(1.3,1), respectively. 

G 
1 

Figure 2.1 

G 
2 

We now generalize these graphs. Let C = U
O
u

1
' .. um_

1
uo be a cycle 

of length m, m ~ 5. For s a positive integer, define the graph E(m.s) 

Take C and s copies C ,C •...• C of C. o 1 S-1 
as follows. Join vertex 

of o :S i :S m - 1, o :S j :S S - 1, to vertex u i of C. E(m. s) is 

the resulting graph. Observe that E(5.1) is the Petersen graph and the 

graph G
1 

of Figure 2.1 is E(6.1). It is easy to see that E(m.s) is a 

graph on (s + l)m vertices having minimum degree 3. The adjacency 

properties of E(m,s) are given in the following result. 

Theorem 2.1: For any positive integers m ~ 5 and s, E(m,s) e ~(l.n.k), 

for n + k :S 3. 
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Proof: In view of Lemma 2.1 it is sufficient to show that E(m,s} E 

§'(1,2,U. Let u be any vertex of E(m,s). If u e C. for some j, then u 
J 

does not belong to any cycle of length less than 5. Hence for any 

other vertices v and w, N(ulv,w} *~. If, on the other hand, u E C at 

least s + 2 2:: 3 vertices a
1
,a

2
, ..• ,a

s
+

2 
are needed so that N(u) s;; 

sv2 N(a). Hence for any distinct pair of vertices v and w of E(m,s)-u, 
1 = 1 1 

N(U/v,w) *~. Therefore E(m,s) E §'(1,2,1), as required. o 

We next generalize the graph G
2 

displayed in Figure 2.1. Let m = 

2r 2:: 6 and 2 :S S :S r. Define the graph E* (2r, s) by adding r new 

vertices labelled 0,1,2, ... ,r - 1 to E(2r,s) and the 2rs edges: 

{(i,ui +
j

). (i,u i +j +r ) : u i +j ' u i +j +r E Cj , O:S i :S r-l, 0;:$ j :S s-l}; 

all subscripts are read modulo 2r. Note that the G
2 

graph in Figure 

2.1 is just E*(6,2). It is easy to see that E*(2r,s) is a graph on 

(2s + 3)r vertices having minimum degree 4. The adjacency properties 

of E*(2r,s) are given in the following result. 

Theorem 2.2: For r 2:: 3 and 2 :S S :S r, E*(2r,s) e §'(l,n,k), for n + k :S 

4. 

Proof: In view of Lemma 2.1 it is sufficient to show that E*(2r,s) E 

§'(1,3,1). Let u be any vertex of E*(2r,s). If u is a new vertex added 

to E(2r,s) or u e C. for some j. then every edge incident to u belongs 
J 

to a cycle of length 5 and to no smaller cycle. Hence for any other 

distinct vertices x, v and w, N(ulx,v,w) *~. If, on the other hand, u 

E C, then at least s + 2 2:: 4 vertices a
1
,a

2
, ... ,a

s
+

2 
are needed so that 
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Hence for any distinct vertices x, v and w of 

E*(2r,s)-u, N(ulx,v,w) * ~. Therefore E*(2r,s) E ~(1,3.1), as 

required. o 

We noted in the introduction that the Petersen graph is in the 

class ~(1,2,1) (\ ~(1,1,2). We now generalize this graph to give 

another class of graphs in ~(l,n,k), n + k s 4. 

Let m and t be integers, m ~ 5 and m * 6, satisfying 

1 < t < m - 1, m * 2t. (2.1) 

Define the graph I(m,t) as follows. The vertices of I(m,t) are 

{V
O
,v

1
"" ,vm-

I
} and the edges are {(vi,vi +t ) : 0 sis m - 1}; all 

subscripts are read modulo m. Noting that I(m,t) ~ I(m,m - t), we can 

replace (2.1) with 

1 
1 < t < 2m . (2.2) 

We use the normal convention of denoting the greatest common 

divisor of integers a and b by (a,b). Observe that I(m,t) consists of 

exactly (m,t) disjoint cycles each of length m/(m,t)' Furthermore, for 

each m we can choose at least one value toof t such that m/(m.t ) ~ 5. 
o 

Note that t * 1. 
o 

Define the graph G(m, to' s) as follows. Start wi th the graph 

I (m, to) and s copies C
O

,C
1
,··· ,C

S
-

1 
of the m-cycle C u u ... u u. 

o 1 m-I 0 

Add the ms edges: 

1, 0 s j s s - 1}. 

Note that G(S,2,1) is the Petersen graph. Observe tha t the graph 

G(m, to' s) has (s + l)m vertices, girth at least 5, minimum degree 3. 

Therefore, by lemmas 2.1 and 2.2 we have: 

78 



Theorem 2.3: Let m and to be integers, 

5. Then G(m,to's) E ~(l,n,k), for n + k s 3. 

5 and m :f:. 6 and mj (m, t ) ~ 
o 

o 

Remark 1: When I (m, to) ~ I (m, t~), to :f:. t~ it is still possible for 

G(m,to's) ~ G(m,t~,s). For example, 1(11,2) ~ 1(11.3) but G(l1,2,t) ~ 

G(11,3,t). 

For r ~ 4, 2 S s S r, we construct the graph G*(2r,to's), from 

G(2r,t
o
's) as follows. Add r new vertices labelled 0,1,2, ... ,r - 1 to 

G(2r,to's) and the 2rs edges: 

{(i,ui + j ), (i,ui + j +r ) : u i +j ' u i + j +r E Cj , 0 sis r-l, 0 S j S s-l}; 

all subscripts are read modulo 2r. It is easy to see that G*(2r,t
o
's) 

is a graph on (2s + 3)r vertices having minimum degree 4. The 

adjacency properties of G*(2r,to's) are given in the following result. 

Theorem 2.4: For r ~ 4, 2 S s S rand 2r/(2r,t ) ~ 5, G*(2r,to 's) E 

o 

~(l,n,k), for n + k s 4. 

Proo:f: In view of lemmas 2.1 and 2.2, we need only to show that 

G*(2r,t
o
's) has girth at least 5. From the construction of the graph 

G*(2r,t
o
's) it is sufficient to show that this graph contains no 

4-cycle. Since G(2r,to's) has girth at least 5 and to :f:. 1, without any 

loss of generality we can assume that G*(2r,to's) contains a 4-cycle 

consisting of one new vertex and one vertex from each of Cj,Ch(h :f:. j) 

and I(2r,t
o
)' This is clearly impossible. o 
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Remark 2: For m ~ 9, the graph G(m, to' 1) obtained from G(m,t
o
,l) by 

adding a vertex x and the edges XU
O

,xu
3 

and xu is in the class 
6 

§'(1,2,l). In fact, for any G e §'(1,2,l), we can add a vertex x of 

degree at least 3 provided the distance between the vertex of N(x) is 

at least 3 and the result is a graph in ~(1,2,1). 

3. §,(1,n,k) 

In this section we will show that the t-cube is in the class 

§' (1 , n, k), for 2n + k :s t. Further, for any nand k, we construct a 

class of graphs with property P(l,n.k). We begin with the cube. 

The t-cube. Qt' is defined as follows: the vertices of Qt are the 

2t vectors (e
1
,e

2
, ••.• e t ) where e

i 
= 0 or 1, i = 1.2, ...• t and two 

vertices are adjacent if and only if their symbols differ in exactly 

one coordinate. 
t 

Thus Qt is a t-regular graph on 2 vertices. 

Exoo and Harary [12] proved that Q2n+l e §'(l,n.1). A more general 

result is: 

Theorem 3.1: Qt e §'(l,n,k), for any 2n + k :s t. 

Proof: Let x be a vertex of Qt and u
1
.u

2 
•... ,ut be the neighbours of 

x. From the definition of a cube we know that Qt contains no triangle 

and no vertex of Qt except x is adjacent to more than two vertices of 

the i = 1,2 ..... t. Since 2n + k :s t. for any n-set A of vertices 

of Qt-X there are at least k other vertices, each of which is adjacent 

to x but not adjacent to any vertex of A. as required. o 
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Our next class of graphs comes from generalizing the 

Hoffman-Singleton graphs. 

Let p ~ 5 be a prime and t an integer satisfying 1 < t < ~p. For 

m = p the graph I (m, t) defined in Section 2 is a cycle of length p. 

For 1 s r, sSp we define the graph Hr(p,t) as follows. Take r copies 
s 

1
0

,1
1

" .,I r -
1 

of I(p,t) and s copies C
O

,C
1

' .•. ,C
S

-
1 

of the p-cycle C = 

u u ... u u. Add the prs edges: 
o 1 P-l 0 

1. 0 S k s S - 1}. 

Note that for the particular case p = 5, t 2 we have (see [15]): 

the Petersen graph H~(5.2) the Wegner graph H~(5,2); the O'Keefe-Wong 

graph H4.(5,2) and the Hoffman-Singleton graph H5 (S,2). Observe that 
4. 5 

the graph Hr(p,t) has (r + s)p vertices, minimum degree 8 = 2 + 
s 

min{r. s}. Of course, is (r + 2)-regular. 

properties of Hr(p,t) are given in the following theorem. 
s 

The adjacency 

Theorem 3.2: 1 Let p ~ 5 be a prime, 1 < t < Zp and 1 S r, ssp. Then 

Hr(p,t) e ~(l,n,k). for n + k S 2 + min{r,s}. 
s 

Proof: In view of lemmas 2.1 and 2.2 we need only show that Hr (p, t) 
s 

has girth at least 5. From the construction of Hr(p,tl it is 
s 

sufficient to show that the graph contains no 4-cycle. So suppose 

Without any loss of generality 

assume that vi e la' Vj e I b , ut e Cc and ~ e Cd' where a * band c * 
d. Then 

t E i + ac E j + bc(mod pl, and 

k E i + ad E j + bd(mod pl. 
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Therefore ac - ad = bc - bd (mod p) and thus (a - b}(c - d) = O(mod pl. 

Hence a = b(mod p) or c = d(mod pl. Now, since 0 < a, b, c, d < P and 

P is a prime, we have equality. a contradiction. 

proof of the theorem. 

This completes the 

We conclude this paper by constructing a graph G E ~(1.2.1) on n 

vertices for every integer n ~ 10 and n ~ 11. As noted in remark 2 the 

graph G(m, to' 1) • m ~ 9 together with Theorem 2.3 establishes the 

existence of G for n = 14, 15, 16 and for n ~ 18. For n = 10 we have 

the Petersen graph whilst for n = 12 and 13 we can take the graphs 

displayed in Figure 3.1. For n = 17 we can take the Paley graph G
17

. 

We remark that it is not to difficult to show that ~(1.2,1) = tP for 

every n s 9 and n = 11. 

Figure 3.1 
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