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Abstract 

It is shown that for each odd integer q, there is a complex Williamson­
Hadamard matrix of order 22n

(q)+1 ·2n (q)+1 . q. 

In a recent paper Craigen, Holzmann and Kharaghani [1] showed that for every odd 
integer q) there is an integer N( q) which does not exceed twice the number of nonzero 
digits in the binary expansion of q, such that the existence of an Orthogonal Design 
(OD) of order 2N (q)-1 implies the existence of a Complex Orthogonal Design (COD) 
of the same number of variables and of order 2N (q)q. Although ODs of order 2m for 
small values of m are known, not much is known when m is 7 or more. We first give a 
method of constructing some crucial ODs of order 2m

) for m 2:: 7. Then we use these 
ODs and present a simple method of extending a classical method of Williamson [3) 
to any class of 2m circulant ±l-matrices, leading to an asymptotic existence theorem 
for complex Williamson matrices. 

A (Complex) Orthogonal Design of order n and type (81, S2, ... , Sk), Si positive 
integers, denoted (C)OD(njSl,s2,'" ,Sk), is a matrix X of order n, with entries in 
{0,CX1,cX2, .. . ,cXk}, c E {±1} (c E {±l,±i}), satisfying XX* = 2::7=1 (six;)In. 
A (complex) Hadamard matrix is a special (C)OD with Xi = 1, for all i and no 
zero entries. A set {Al, A 2 , ••• , Am} of (0, ±1, ±i)-matrices of order n is called m­
supplementary of weight w if 2::~1 AiAi = wIn. An m-supplementary set of circulant 
matrices of weight nm is called a set of m-complex Williamson matrices if Ai 
Ai for all i. A pair of matrices X, Y is called amicable (antiamicable) if XY* = 
YX* (XY* = -YX*). For integer n = 2C q, q odd, write c = 4a + b, 0::; 
b < 4. pC n) = 8a + 2b is called the Radon number of n. It is easy to see that 
p(22n+l_lq) = 2n+2 , for any odd integer q. 
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Our main reference is [2] and we refer the reader to this reference for terminology 
not defined here. . 

We begin with a well known result. 

Theorem 1 For every positive integer n, there is an OD(n; 1,1, ... ,1) in p(n)­
variables. Equivalently, there are pen) (0, ±l)-matrices, P1 , P2, ... , pp(n) , of order 
n such that: 

(i) Pi * Pj = 0, i i= j 

(ii) PiPl = I 

(iii) PiP] = - Pj Pl , i i= j. 

PROOF. See page 2 of [2]. I 

Following Craigen, ,(0, ±l)-matrices satisfying (ii) above are called signed permuta­

tions. For matrices A, • A2 • let L2(A, • A,) (~:~:). Inductively. for k > 1 and 

matrices All A 2, ... , A2k, let 

L2k(AI' A2, ... , A2k) = L2(L2k-l(A1 , A2, ... , A2k-l), L2k-l (A2k-l+1,"" A2k)). 

For example, 

We call such a matrix an L 2k-matrix constructed from 2k matrices AI, A2, . .. , A2k. 
Obviously, different ordering of Ai's give different L 2k-matrices. 

Lemma 2 Let {PI, P2, ... , P2k}, k a positive integer, be a set of mutually anti­
amicable signed permutations of order n. Let H be an Hadamard matrix of order n. 
Then any L2k-matrix constructed from 2k matrices XIPIH, X2P2H, .. . , X2kP2kH, is 
an OD(2kn; n, n, ... , n) in 2k-variables. 

PROOF. We use induction on k. For k 1, note that (XiPiH)(XiPiHY = nx;In, 
so XiPiH is an OD(nin) for all i. PI,P2 are antiamicable, so are XIPIH,X2P2H. 
Hence L2(XIPIH,X2P2H) is an OD(2njn,n). 

Assume that X = L2t(X1P1 H, X2P2H, ... , X2lP2lH) and Y = L2l(X2L+1P2l+1H, ... , 
X2l+1 P2lt1 H) are OD(2ln; n, n, ... ,n). It follows now from the assumption on the 
Pi's that X and Yare antiamicable ODs. So L2ltl(X IPIH, ... , X2l+1P2ltlH) is an 
OD(2l+1 . ). 2l+1 . bl n,n,n, ... ,n In -varIa es. I 
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Theorem 3 Let the Pi'S and H be as in Lemma 2. Assume further that P2i * 
P2i-l 0, 1, = 1,2, . ,2k - 1 . Then any L2k-matrix constructed from 2k - 1 matrices 
{Ai ~a2i(P2i + P2i- 1 )H + ~a2i-l(P2i - P2i_l)H}t~~1 is an OD(2k

-
1n; j, j, ... , j) 

in 2k -variables. 

PROOF. Note that the set {P2i+ P2i-l, P2i P2i_d:~~1 is a mutually antiamicable set 
of (0, ±l)-matrices and (%(P2i+P2i-dH +~(P2i-P2i-dH) (%(P2i +P2i-dH +~(P2i-
P2l_1 )H)t Ha2 + b2)n1n, i = 1,2, .. ,2k-I. The rest follows from Lemma 2. II 

Theorem 4 For each positive integer n) there is an OD(22
n.+l-

1 . 2n +1, a, a, .. . , a) 
in 2n +2 -variables} which is an L 2n+l -matrix constructed from 2n +1 antiamicable ma­
trices. 

PROOF. Apply Theorem 3 to any Hadamard matrix of order 22n+
1

-
1 and signed 

permutation matrices of order 22",+1_1 obtained from Theorem 1. II 

REMARKS. (i) While Theorem 4 does not give ODs of new order for n 1, all ODs 
obtained have special structures. All the ODs, for n > 1, obtained from Theorem 3 
are new. 

(ii) The existence of OD(2; 1,1), OD(4; 1, 1, 1, 1) and ODeS; 1, 1, 1, 1, 1, 1, 1, 1) leads 
one to the following conjecture. 

Conjecture All full (no zero entries) OD(22n.+1- 1 ; a, a, ... , a) in 2n +2-variables ex­
ist} n 2': 1. 

The conjecture is only known for n = 1. It is easy to see that any OD of the above 
type will not be constructible from antiamicable ODs as in Theorem 4. 

Next we show a method to "replace" every ±1-circulant matrix with two Hermitian 
(±1, ±i)-circulant ones. Let A be a normal ±1-matrix. Let B HA + At), C = 
i(A At). Then B, C are disjoint Hermitian (0, ±1, ±i)-matrices of the same order 
as A. Furthermore, BB* + CC* = AAt

, BC CB. Let B1 = B + C, C1 = B - C, 
then B1, C1 are commuting (±1, ±i)-matrices and BIB; + C1C; 2AAt. 

Noting that every circulant matrix is normal, we have the following. 

Lemma 5 Given m-supplementary circulant ±1-matrices of order n) there are 2m­
supplementary circulant (±1, ±i)-Hermitian matrices of order n. 

PROOF. Let {AI, A 2 , .•• , Am} be a supplementary set of circulant ±1-matrices of 
order n. Let B i , Ci. be the matrices corresponding to Ai as above for each 1 :S i :S m. 
The lemma is now immediate. III 
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(0, ±1 )-matrices with zero non-periodic auto correlations are called complementary 
matrices. There are plenty of such matrices, see [2] for details. Complementary 
matrices are special cases of supplementary matrices. The most elementary method 
of constructing complementary matrices is to use Golay sequences of length 2n In 
order to show the asymptotic existence of complex Williamson matrices we need the 
following simple lemma. 

Lemma 6 Let q be an odd integer. Let n( q) be the smallest integer such that the 
number of nonzero terms in the binary expansion of q does not exceed 2n(q) , Then 

2n(q) 

q = I:: 2"'i, ai;:::: O. 
i=l 

PROO F. Let q = 1 + 2:::=1 2{3i, 0 < 131 < 132 < .. < 13k. Then by the choice of n( q) 
2n(q)-1 < k + 1 S 2n(q). Let j = 2n(q) - k - 1, and write 2{3k = 2{3k-1 + 2{3k-2 + , .. + 
2{3k-j + 2{3k-i. Then q = 1 + 2{31 + 2{32 + ,., + 2{3k-l + . + 2{3k-1 + ... + 2{3k-j = a 
sum of 2n(q) terms. III 

For ±1-sequences A, B, C,. . as usual, let ABC .. denote the longer sequence A 
followed by B, C and so on. Let A be the negative of all elements of A. 

Lemma 7 For odd integer q} let n(q) be as in Lemma 5. Then there is a 2n(q)+l_ 

complementary sequence of ±1-circulant matrices of order q, constructed from Golay 
sequences of length 2\ k 2: o. 

2n(q) 

PROOF. Let q = I:: 2"'i, al = 0, ai > O. Let A k , Bk be a Golay sequence of 
i=l 

length 20:k, taking Al = (1), Bl = (1). Let e be the 2n(qL dirnensional column vector 
of ones, H an Hadamard matrix of order 2n(q) and A (A l ,A2, ... ,A2n(q»), B = 
(Bl , B 2 , • , . , B 2n(q») the 2n(qLdimensional row vectors. Consider the matrices (eA) * H 
and (eB) * H, where * is the Hadamard product. Consider a circulant ±1-matrix 
whose first row is one row from either of (eA) * H or (eB) * H. There are 2n (q)+1 

such matrices of order q. This gives the desired matrices. I 

Lemma 8 Let q be an odd integer. Then there is a set of2n(q)+2-complex Williamson 

matrices of order q. 

PROOF. By Lemma 7, there is a 2n (Q)+l-complementary sequence of ±1-circulant ma­
trices of order q. By applying Lemma 5, we thus get 2n(q)+2-supplementary (±1, ±i)­
circulant Hermitian matrices of order q. I 
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Theorem 9 Let q be an odd integer. Then there is a complex Williamson-Hadamard 
matrix of order 2 2n

(q)+1 • 2n(q)+1 . q. 

PROOF. By Theorem 4, there is an OD(22n(Q)+1-1.2n(q)+1j a, ... , a) in 2n (Q)+2-variables. 
Replace the variables by the Williamson matrices obtained in Lemma 8, to get the 
desired Hadamard matrix. III 

Let q = 11, and write + = 1, - = -1. Note 11 = 1 + 2 + 23 1 + 2 + 22 + 22, so 
nell) = 2. Now, 

A1 =(+), Bl (+ ), 

A2 = (++), B2 (+-), 

A3 = A4 = ( + + + - ), B3 B4 = (+ + -+), 

A = (AI, A2, A3, A4), B (BI' B2, B3, B 4), 

AIA2A3A4 
AIA2.A3A4 
AIA2A3A4 
AIA2 .A3 A4 
BIB2B3B4 
BIB2B3B4 
BIB2B3B4 
BIB2B3B4 

H= (1 + + 

n' + 
+ 

( + + + + + + - + + + - ) = al 

( + - - - - - + + + + - ) = a2 

( + - - + + + - - - +) = a3 

( + + + - - - + - - - +) = a4 

( + + - + + - + + + +) = a5 

(+ - + - - + - + + - +) = a6 

( + - + + + + - - + - ) = a7 

( + + - - - + - - + -) = as· 

From each of the ai we get two Hermitian circulant matrices, but we show only the 
first two. 

~ (al + aD = (+ 0 + + + 0 0 + + + 0), ~ (al - aD = (0 + 0 0 0 + - 0 0 0 - ). 

So, (+i+++i~+++~) and (+~+++~i+++i) are the two (±l,±i)-Hermitian 
matrices corresponding to al. 

Continuing this process we get 16 (±1, ±i)-circulant Hermitian matrices. Replacing 
the variables in OD(210j 26

, .•. ,26
) in 24 -variables by these Hermitian matrices, we 
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get a complex Williamson matrix of order 210 ·11. If the conjecture in this paper was 
correct, then we would have had a complex Williamson matrix of order 27 . 11. III 

The following result shows a great advantage of the construction method used in this 
paper. 

Theorem 10 Let p, q be odd integers with n(p) = n( q). If 2 2n
(1')+1_1 • p is the order 

of an Hadamard matrix, then there is a complex Williamson Hadamard matrix of 
order 22n(1')+1-1 • 2n(p)+1 . pq. 

PROOF. Apply Theorem 3 to the Hadamard matrix of order 22n
(1')+1_1 . p and the 

signed permutation matrices of order 22n.(P)+1_1 .p obtained from Theorem 1, to get an 
OD(22n

(P)+1_1 ·2n(p)+1 . p; a, a, ... , a) in 2n (p)+2-variables. Now, replace the variables 
by the complex Williamson matrices of Lemma 8. III 
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