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Abstract

It is shown that for each odd integer g, there is a complex Williamson-
Hadamard matrix of order 22™¥*" . gn(a)+1 . q.

In a recent paper Craigen, Holzmann and Kharaghani [1] showed that for every odd
integer g, there is an integer N(g) which does not exceed twice the number of nonzero
digits in the binary expansion of ¢, such that the existence of an Orthogonal Design
(OD) of order 2V~ implies the existence of a Complex Orthogonal Design (COD)
of the same number of variables and of order 2¥(?)q. Although ODs of order 2™ for
small values of m are known, not much is known when m is 7 or more. We first give a
method of constructing some crucial ODs of order 2™, for m > 7. Then we use these
ODs and present a simple method of extending a classical method of Williamson [3]
to any class of 2™ circulant +1-matrices, leading to an asymptotic existence theorem
for complex Williamson matrices.

A (Complex) Orthogonal Design of order n and type (s1,52,...,8k), s positive
integers, denoted (C)OD(n; sy, s3,. .., 5k), is a matrix X of order n, with entries in
{0,ez1,e25,...,eai}, €€ {+1} (e€ {%1,+45}), satisfying X X* = 8 | (s;22)1,.
A (complex) Hadamard matrix is a special (C)OD with z; = 1, for all 4 and no
zero entries. A set {A;, Ay,..., Am} of (0,41, 44i)-matrices of order n is called m-
supplementary of weight w if 57, A;A* = wl,. An m-supplermentary set of circulant
matrices of weight nm is called a set of m-complex Williamson matrices if 4; =
A for all 3. A pair of matrices X,Y is called amicable (antiamicable) if XY* =
YX* (XY* = —YX*). For integer n = 2°q, ¢ odd, write ¢ = 4a +b, 0 <
b <4 p(n) = 8a+ 2% is called the Radon number of n. It is easy to see that
p(22"" ~1¢) = 22 for any odd integer q. :
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Our main reference is [2] and we refer the reader to this reference for terminology
not defined here.

We begin with a well known result.

Theorem 1 For every positive integer n, there is an OD(n;1,1,...,1) in p(n)-
variables. Equivalently, there are p(n) (0,%1)-matrices, Py, P,,..., Py, of order

n such that:

(i) PbxP;=0, 1#73

(i) PPl =

(1i1) Pint =—P;Pt, i#7.

PROOF. See page 2 of [2]. &

Following Craigen, (0,+1)-matrices satisfying (ii) above are called signed permuta-

tions. For matrices A;, Ay, let Ly(Ay, A2) = ( A A,

A, A ) Inductively, for £ > 1 and

matrices Ay, Ag, ..., Ay, let
sz(Al, Ag, ey Azk) = Lz(Lzh—-l(A]_, Az, ceey Azh——l), sz-—l (A2k31+1, . e ,Azk))-

For example,

Ay Ay Az Ay
A, Ay Ay A
LZZ(Al;A2)A3)A22) = LZ(L2(A1)A2))L2(A3:A22)) = A; Az A.: AZ
A4 A3 A2 Al
We call such a matrix an Lys-matrix constructed from 2¥ matrices Ay, Az, ..., Ags.

Obviously, different ordering of A;’s give different L,:-matrices.

Lemma 2 Let {P, P,,..., Py}, k a positive integer, be a set of mutually ant:-
amicable signed permutations of order n. Let H be an Hadamard matric of order n.
Then any Lye-matriz constructed from 2% matrices z,P1H, 23 P H, ...,z P H, is
an OD(2*n;n,n,...,n) in 2*-variables.

PROOF. We use induction on k. For k = 1, note that (z; P, H)(z;P,H)* = nzil,,
so z;P,H is an OD(n;n) for all i. P, P, are antiamicable, so are =Py H,z, P, H.
Hence Ly(z, P H,z, P, H) is an OD(2n;n,n).

Assume that X = Ly(zPiH,z, P H,. .. 20 PpeH) and Y = Ly(zge Poe i H, ...,
Zore1 Pyrrr H) are OD(2%n;n,n,...,n). It follows now from the assumption on the
P;’s that X and Y are antiamicable ODs. So Lyewi(zi P H,. .., Tp41Pyers H) is an
OD(2%'n;n,n,...,n) in 2t -variables. §

226




Theorem 3 Let the P;’s and H be as in Lemma 2. Assume further that Py, %
Py 1=0, 1=1,2,...,2%1 Then any Lo-matriz constructed from 26~ matrices
{A = —aZ,(Pm + Pz, 1)H + az, (Pg,' - PZ,'_‘I)H}?:; s an OD(2"”1n -

.non n
1213000y
in 2% -variables.

PrOOF. Note that the set {Py;+ Po; 1, Py; — Pz,,l},_’:l is a mutually antiamicable set
of (0, il)—matr}ces and (5(Pai+ Pai- 1)H+ (Pyi—Pyi1)H) (5(Pei+ Py )H+ z(P2f
Py 4)H) = Ha?2 +W)nl,, 1=1,2,. 2’° ~1. The rest follows from Lemma 2. B

]
in 2" % variables, which is an Lyn+i-matriz constructed from 2! antiamicable ma-

trices.

Theorem 4 For each positive integer n, there is an OD(27""" =1 . 2™1. g o . a)

PRroOOF. Apply Theorem 3 to any Hadamard matrix of order 22" ~! and signed
permutation matrices of order 22**'~1 obtained from Theorem 1. §

REMARKS. (i) While Theorem 4 does not give ODs of new order for n = 1, all ODs
obtained have special structures. All the ODs, for n > 1, obtained from Theorem 3
are new.

(ii) The existence of OD(2;1,1), OD(4;1,1,1,1) and OD(8;1,1,1,1,1,1,1,1) leads
one to the following conjecture.

Conjecture All full (no zero entries) OD(22"" 1,4, a,...,a) in 22 variables ez-
ist, n > 1.

The conjecture is only known for n = 1. It is easy to see that any OD of the above
type will not be constructible from antiamicable ODs as in Theorem 4.

Next we show a method to “replace” every +1-circulant matrix with two Hermitian
(1, 41)-circulant ones. Let A be a normal +1-matrix. Let B = A+ 4, ¢ =

3(A— A%). Then B, C are disjoint Hermitian (0, +1, +4)-matrices of the same order
as A. Furthermore, BB* + CC* = AA*, BC = CB. Let B; = B -+ C,C,=B-C,
then B;, C; are commuting (+1, :l:i)~ma,trices and By B} + C1C} = 2A A

Noting that every circulant matrix is normal, we have the following.

Lemma 5 Given m-supplementary circulant +1-matrices of order n, there are 2m-
supplementary circulant (+1, +1)-Hermitian matrices of order n.

ProoF. Let {4, A,,..., A} be a supplementary set of circulant 41-matrices of
order n. Let B;, C; be the matrices corresponding to A; as above for each 1 <7< m.
The lemma is now immediate. §
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(0, +1)-matrices with zero non-periodic autocorrelations are called complementary
matrices. There are plenty of such matrices, see [2] for details. Complementary
matrices are special cases of supplementary matrices. The most elementary method
of constructing complementary matrices is to use Golay sequences of length 2™. In
order to show the asymptotic existence of complex Williamson matrices we need the
following simple lemma.

Lemma 6 Let g be an odd integer. Let n(q) be the smallest integer such that the
number of nonzero terms in the binary ezpansion of q does not exceed 29). Then

2n(9)
g= » 2% o;>0.

=1

PROOF. Let q =1+ 3F,2% 0< B < By <...< Bk Then by the choice of n(g)
o)1 < k1 <279 Let j =29 — k — 1, and write 2P% = 2%~1 4 2/-2 4 |
206=3 1 2Pk=3 Then q=1+2% 426 4 4 2P 4 2% 14 2P0 =
sum of 29 terms. B

For +1-sequences A, B,C,..., as usual, let ABC ... denote the longer sequence A
followed by B, C and so on. Let A be the negative of all elements of A.

Lemma 7 For odd integer q, let n(q) be as in Lemma 5. Then there is a 2M@+1-
complementary sequence of £1-circulant matrices of order q, constructed from Golay
sequences of length 2%, k> 0.

2m(9)
PROOF. Let g = Z 2% a; = 0, o > 0. Let Ag, Bx be a Golay sequence of
=1
length 2%+ taking 4; = (1), B; = (1). Let e be the 27(9)_dimensional column vector
of ones, H an Hadamard matrix of order 29 and A = (A1, As,..., Agna), B =
(Bi, Bs, ..., Bynqy) the 9™9)_dimensional row vectors. Consider the matrices (eA)* H
and (eB) x H, where x is the Hadamard product. Consider a circulant +1-matrix
whose first row is one row from either of (eA) x H or (eB) * H. There are 29!
such matrices of order q. This gives the desired matrices. B

Lemma 8 Let q be an odd integer. Then there is a set of 249+2_comples Williamson
matrices of order q.

PROOF. By Lemma 7, there is a 29+ .complementary sequence of +1-circulant ma-
trices of order ¢g. By applying Lemma 5, we thus get 2*@+2_supplementary (£1, +1)-
circulant Hermitian matrices of order gq. B
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Theorem 9 Let q be an odd integer. Then there is a complez Williamson-Hadamard
matriz of order 22701 . gn(@+1 . g

PROOF. By Theorem 4, there is an OD(Zzn(q)H“l‘Q"(q)“; a,...,a)in 2%9+2 variables.
Replace the variables by the Williamson matrices obtained in Lemma 8, to get the
desired Hadamard matrix. B

Let ¢ = 11, and write + =1, — = —1. Note 11 = 1 +2+2% = 142422422 50
n(11) = 2. Now,

A =(+), Bi=(4)
Ay = (+4), By=(+-),
Ay=As=(+++-), Bi=Bs=(++—+4),
A = (A1, Ay, A3, Ay), B = (B, Bs, Bs, By),

+ + + 4
+ - = +
=14 4 |

+ + - -
A1 Az A3 A4 Bl BZ B3 B4
= A1 Az A;; A4 . Bl B2 B3 B4
(EA)*H— A1 Az A3 A4 ’ (eB)*H_ Bl B2 Bi3 -?4
A]_ A2 Ag A4 Bl B2 B3 B4

A1ArAsAy = (H+++++—+++-)=as

M hahy = (F——— -~ 4t o) =a
A ApA3Ay = (F——+4+————4)=ua3
A1A2A3A4 = (+++_____+____+):a4

BiB:B3By = (++—++—+++~+)=as
BiByBsBy = (+—+-—+—++-+)=uae
BiB;B3By = (+—+++—+-—+-)=ar
B\B;B3By = (++———+—~~+-)=as

From each of the a; we get two Hermitian circulant matrices, but we show only the
first two.

j(a+a)=(+0++400+++40), 1(a;—al)=(0+000+-000-).

So, (+i+-++15+++7) and (+2+++4i+ + + 1) are the two (&1, £i)-Hermitian
matrices corresponding to a;.

Continuing this process we get 16 (%1, +¢)-circulant Hermitian matrices. Replacing
the variables in OD(2%;25,...,25) in 2*-variables by these Hermitian matrices, we
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get a complex Williamson matrix of order 21°-11. If the conjecture in this paper was
correct, then we would have had a complex Williamson matrix of order 27 - 11. &

The following result shows a great advantage of the construction method used in this
paper.

Theorem 10 Let p,q be odd integers with n(p) = n(q). If 27" ~1. p is the order

of an Hadamard matriz, then there is a complez Williamson Hadamard matriz of
order 227 -1 . gn(p)+1 - pq.

Proor. Apply Theorem 3 to the Hadamard matrix of order g2t -1 p and the
signed permutation matrices of order 22" ~1.p obtained from Theorem 1, to get an
OD(227‘(}’)+1“1 LM g, a) in 2™P)+2_variables. Now, replace the variables
by the complex Williamson matrices of Lemma 8. B
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