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Abstract. In [2] Bussemaker and Tonchev constructed six doubly
even (56,28,12) codes from two Hadamard matrices of order 28. But
two of them were not distinguished. In [11] and [12] we characterized
Hadamard matrices of order 28 and there are exactly 487 Hadamard
matrices, up to equivalence. In this paper we show that only two of the
above 487 matrices produce six doubly even (56,28,12) codes and that
two of the six codes are equivalent. Therefore there are exactly five
(56,28,12) codes, up to equivalence, produced by Hadamard matrices
of order 28.

1. INTRODUCTION

A Hadamard matrix H of order n is an n x n matrix of +1's with HH* = nl. It is
well known that n is necessarily 1, 2 or a multiple of four. We say that two matrices
M; and M, of the same size are equivalent if there exists a signed permutation g of
rows and columns of M; with M{ = M,. A matrix which is equivalent to a Hadamard
matrix is also a Hadamard matrix. An automorphism of H is a signed permutation
g of the set of rows and columns such that H9 = H. The set of automorphisms forms
a group under composition called the automorphism group of H and it 1s denoted by
Aut(Hf). We say that a set of four rows of H is a Hall set if the submatrix consisting
of the four rows is equivalent to the following matrix:
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where J,, is the all 1's row vector of dimension (n — 4)/4.

The equivalence classes of Hadamard matrices of order < 28 have been determined
by Hall, Ito-Leon-Longyear and the author([5], [6], [7], [11] and [12]). There are
exactly 487 inequivalent Hadamard matrices of order 28. One of them has no Hall set
and the others have Hall sets. These matrices are distinguished by their K-matrices
except five matrices in [9].

Let F' = GF(2) be the field of two elements 0 and 1. Let F'™ be the vector space of
dimension n over F. For elements © = (1, ,&n) and y = (y1,- - ,¥n) of F™, the
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Hamming distance d(z,y) is defined by the number of « with z; 7 y;. The Hamming
weight wt(z) of z is defined by d(z,0). For a column vector z put wi(z) = wi(z*).
A binary linear (n,k) code C is a subspace of F™ of dimension k. The minimum
distance of C is defined by the minimum weight among all non-zero elements of C.
The generator matrix of C is the matrix whose rows are the basis vectors of C'. Two
codes are equivalent if one can be obtained from the other by a permutation of the
coordinate positions.

We assume that the reader is familiar with the basic facts from the theory of
self-dual linear codes. Qur terminology follows [3].

Tt is well known that for a Hadamard matrix of order n there exists a binary code
with n symbols, 2n code words, and minimum distance n/2. This is not necessar-
ily a linear code. On the other hand many linear codes can be constructed from
Hadamard matrices. It is well known that the (24,12,8) Golay code is obtained
from a Hadamard matrix of order 12 ([15]).

In [19] Tonchev gave a general method of a construction of binary self-orthogonal
codes and in [2] obtained six doubly even self-dual (56, 28,12) codes from two
Hadamard matrices of order 28. But two of the six codes were not distinguished.

We discuss the existence and equivalence of extremal doubly even self-dual
(56,28,12) codes obtained from all Hadamard matrices of order 28 by the method
in [19].

We can consider that (H + J)/2 is a matrix on F, where J is the all 1's matrix,
and we denote this also by H if there is no confusion.

Theorem 1. Let H be a Hadamard matriz of order 28 and C a binary self-dual
(56,28,12) code with generator matriz (I, H). Then H and C are equivalent to one
of two matrices and one of siz codes in (2], respectively. Moreover two of the siz
codes are equivalent.

One of the matrices in Theorem 1 is of @R — type and the other is equivalent to
the 471 — th matrix in [13].
2. GENERAL PROPERTIES

Let H = (h;;) be a normalized Hadamard matrix of order n = 28. Let T' =
{1,---,28}. Let B and P be subsets of I". Let Hp p be a Hadamard matrix obtained
from H by negating the rows in B and the columns in P. By [2], if the matrix
(I, Hp,p) generates a binary self-dual doubly even (56, 28,12) code, then the following

condition must be satisfied:

Condition 1. The weight of every row and column of Hp p is greater than 10 and
congruent to 3 (mod 4).

Let C{H} be the set of equivalence classes of codes constructed from H as above.
Then we have the following proposition.

Proposition 2. If H' is equivalent to H, then C{H} = C{H'}.
Therefore we may assume that H is of normal form, when we determine C{H}.

Proposition 3. If B and P contain 1, then there exist subsets B' and P' of T’ not
containing 1 such that C(Hp p) is equivalent to C{Hpg: pr).
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Since a matrix (H*®, I) generates C(I, H), the following proposition is trivial.
Proposition 4. C{H} = C{H*} and hence we assume |B| > |P|.

We denote a code generated by (I, Hp p) EC(Hpg,p) if it is an extremal self-dual
doubly even (56,28,12) code.

We study H when Hp p generates EC(Hpp). Since H is Hadamard matrix, it
is trivial that the weight of a sum of every different two rows of (I, Hgp) is 16.
By Proposition 4, (I, Hp p) generates EC(Hp p), if Condition 1 and the following
condition are satisfied:

Condition 2. Weights of sums of three or four rows of (I, Hp,p) and (Hp p, I) must
be greater than 11, respectively.

At first we assume B = {2,---,28} and P = {1}. Then Hp p satisfies the Con-
dition 1 and hence (I, Hp, p) generates a doubly even code. Let H' be an equivalent
matrix of H of normal form. Then a code generated by (I, Hp p) is equivalent to
the above code by [16]. If H has no Hall set, then H*® has also no hall set by [14].
Thus the weights of sums of all three or four row vectors of H and H® are greater
than, or equal to 12. By Condition 2 (I, Hg p) generates EC(Hp p). In this case
set Hy = Hpp. If H has Hall sets, then we may assume by Propositon 2 that a
submatrix of H consisting of its first four rows is of form (1.1). Thus the sum of
the first four rows of (I, Hg p) is of weight 8 and the minimum weight of the code
generated by (I, Hp p) is less than 12.

Proposition 5. If the weight of some column of Hp:pr equals 27, then there ezists
a row of weight 27 and hence it is equivalent to (I, Hp p).

Proof. We may assume the weight of the first column equals 27, hy; = 0 and hy; = 0.
By the orthogonality of the first and second columns, the weight of the second column
must be 13. This contradicts the Condition 1. Hence hy; = 1 for all z. This proves
the proposition. [

By this proposition and [16], if there exists a row or column of Hp p whose weight
is 27, then the code generated by (I, Hg p) is equivalent to the code generated by
(I, Hy). Therefore we assume the weights of all rows and columns of Hp p are less
than 27.

Since H does not have a Hall set, the weight of every different four rows of (I, Hg p)
and (Hj p, I) is greater than 12, respectively.

3. ON THE CASE H HAS NOo HALL SET

In this section we assume that H has no Hall set. Then we may assume that
H is the Paley matrix defined by the squares in F = GF(27) by [12]. Let F =
Z3|X]/(f(X)), where Z3 = GF(3) and f(X) is an irreducible polynomial over Z;.

We assign a number to an element of F' in the following way:

(3.1) aX? 4+ bX + ¢ (mod (f(z)) «— 3%*a+3b+ec.
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1lhen U =41l,0,/(,06,9,1},14,15,10, 10,4V, 44,40 15 4 QICICLLE 5CL allQ ¢ 7 4,9 <
F} is a set of blocks of a Hadamard 2—(27,13,6) design. We also denote an incidence
matrix of this design by D = (d;;). Then

. 1 . 1
(3.2) H=(H =)|: D
1
Let col(D) be the set of columns ¢ such that (2 — 2) are not contained in the

difference set D. The permutation groups Aut(H) on the set of rows and Aut(H)
on the set of columns are same as permutation groups.

Proposition 6. We may assume B and P do not contain 1.

Proof. By Proposition 3 and 4, assume 1 € B and 1 ¢ P. Since 1 < [B| =1 (4)
and |P| = 3 (4), there exists i (> 1) not contained in B N P. Then (4,7)-component
of Hpp is 1. By Proposition 2 we may assume that (1,1)-component of Hpp is 1.
This proves the proposition. [

Proposition 7. We may assume B and P do not contain 2.

Proof. If BUP # T, then the proposition follows. Assume BUP # I. Then, by the
same permutation of T' if necessary, Hp p is the following form:

11 0 0
oM o4
Hep=11 " m, B[’

0 A2 B, M;

where M; and M, have diagonals of all 1's, M3 has a diagonal of all 0's, A} = A3
and B! = B,. Let M; be of size m; (i = 1,2,3). i mg =0, then my +1 = 11,15,
and m; +1 = 11,15, --. this contradicts m; + my = 27. Therefore msz > 0. If
A; = 0 and B; = 0, then m3 > 12 by Condition 2. Thus there exists a pair (3, j) of a
row and a column such that the (,7), (3,7) and (j,1) components are 1 and the (j, j)
component is 0. Since Aut(H) is doubly transitive, then the proposition follows. [

Proposition 8. |col(D) — P| is an odd number greater than 2 and we may assume
P does not contain 3.

Proof. Let a and b be the numbers of columns of col(D) — P and columns not
contained in P U col(D) U{1,2}, respectively. Applying Condition 1 to the first and
the second columns, a + b =9,13,--- and a + (13 — b) = 10,14,---. a+b=1(4)
and a— b= 1 (4). Therefore a > 3 and a is odd. There exists an element of Aut(H )
fixing the first and second rows and columns such that it transforms the 3rd column
to a column of col(D) — P. Thus we may assume the 3rd column is not negated. [

Under Conditions 1 and 2 we compute by a computer program satisfying the
propositions in this section. Then we have four solutions case 2,3,4 and 5 in Table 2.
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In this section we assume that H has Hall sets. Then H is one of the 486 matrices
obtained in [11] by Proposition 2. The following proposition is trivial from the
definition of Hall set.

Proposition 9. Let {ry,73,73,74} be a Hall set of H. The vector r1 + 72 + 713+ 14
in F™ is of weight 4 or 24.

By this, if (I, Hp,p) generates EC(Hp,p), then

lor3, ifwt(ry +ry+ra+rs)=4

(4.1) 1B {rsrars,rad] = {0,2 or 4, if wi(ry +ra+r3+1rs) = 24.

Let {As,---,An} be a family consisting of all the Hall sets of H. Set &; =
Ay U---UA,;. Assume the following:

Condition 3. £, C X, ¢ - C Ip = 3
Set k(H) = I'— %, for H. For almost all matricesin [11] & =T'. Maz{k(H)} = 3.

If we make a computer program under the conditions in Section 2 and this section, H

must be a matrix Hyr in [11], say H, in this paper. In fact the following subfamily
of Hall sets of H, satisfies Condition 3:

TABLE 1. A subfamily of Hall sets of H,

Hall set Al Az A3 A4 A5 As A.*] Aa Ag AIO
Tows 2 2 2 3 3 3 4 4 4 5
11 12| 16| 12| 13| 16| 11 13 14| 14
21| 23| 21 22| 24| 22| 23| 20| 20| 23
241 24| 23| 26| 25| 24| 25| 23| 25| 27
weight 4 4 4 4 4 4 4 4 4 4

Hall set | Ays | Aqa | Asa | Arg | Ass | A | A7 | Agg | Ao
rows 5 5 6 6 7 7 8 g 10
15 17 157 18 14 19 12 13 11
26| 231 24| 24| 261 25| 21 22 20
27| 26| 28| 27| 28| 28| 26 27| 28
weight 4 4 4 4 4 4 4 4 4

The weight of the sum of the four elements of every Hall set A; {i =1, ,19} is
four. Therefore |{B N A;}| must be one or three. There exists no Hall set containing
the first row and the first column is not contained in any Hall set of H®. In this case
we may compute by hand and two solutions are obtained:

o B; ={2,3,4,5,6,7,8,9,10}
(42) P, = {11,12,13,14,15,16,17,18,19}
and
i3 B, = {11,12,13,14,15,16,17,18,19}
(43) P, ={2,3,4,5,6,7,8,9,10}
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olince fiz and i1, nave the same A —matrix, they are equivalent. in Iact, by wne
following permutations g and h on the sets of rows and colurnns of H,, respectively,
H, transforms to its transpose.

(4.4)

g = (2,3)(4,9)(5,8)(6, 7)(10,11)(13, 17, 15,18, 14, 16)(19, 20)(22, 25, 23, 27, 24, 26)
(4.5)

k= (2,3)(4,9)(5,8)(6, 7)(10,11)(13, 16, 14,18, 15,17)(19, 20)(22, 26, 24, 27, 23, 25)

Applying g and h, (4.2) is equivalent to (4.3). This code is the 6-th code in Table 2.

5. ON EQUIVALENCE OF CODES

In this section we discuss the equivalence of the six codes in Table 2 or in [2]. We
consider the 3—designs formed by the minimum weight codewords. The definition of
the class size of a code is given in [2]. The codes No.4 and No.6 in Table 2 have the
same class size.

We introduced the K —matrices and K-boxes associated with Hadamard matrices.
This idea is useful for a classification of codes or designs. For the definition of
K —matrix, see [8] or [9]. Let C be a binary self-dual doubly even (56,28,12) code.
We define the K—box for C. Let D = (d; ;) be the 3 — (56,12,65) design formed by
the minimum weight codewords.

For any different p points 41,--- ,1p, let by ..;, be the number of blocks of D
containing the p points. Next we define a,,,.. s, for two positive integers ¢; and
g2 (g1 € ¢2) as follows:

1, If 75} S b"h"'ﬂ'p < q2

a'i1,---,i,(q17<q2) = {0 -

otherwise

If |{is, - ,%p}] < p, then set a;,..;, = 0. For three points z,y and z, define
Coy:(q1,q2) as follows:

Cope(0, @)= D, Gipe (41, 92)-

zy,2€{i1, " ip}

For fixed 1, j, by a permutation of indexes we assume that cx, ;i(q1,92) < ckyi5(q01, g2)
if k; < k;. Then we have 56 matrices B(3)y . .(C) = (¢jki(q1,92)),2 =1, -+ ,56. For
fixed 1, after ordering B(4)j ,, ..(C) lexicographically, we denote this by B(3), ;. .,(C).
Furthermore we rearrange lexicographically the collection of matrices B(3), ;, .. with
1 < 1 <€ 56. We call this collection the K—box of €' (or D) and denote it by
By4,,4:(C). By the definition of K—box, if a code C' is equivalent to C, then their

K —boxes are the same.
Let C, and Cg be codes No.4 and No.6 in Table 2, respectively. Then Bss(Cs) =

B;1(Cs) and therefore we can not distinguish the two codes by K—boxes. But
we can find a permutation g of coordinates of C4 such that € is equivalent to
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B(i)s,l,s(Cf‘) = B('I;)s'llg(Cs) for all 1:
(1)(2,20, 26, 54, 17, 33,32, 31,9, 19, 25, 51, 53, 16, 30, 39, 42,
g1 = {38,41,37, 34,40, 3, 35, 14, 6,21, 48, 45, 8, 56, 47, 44, 7, 36, 15,
24,27, 4,18)(5, 10,22, 11,23, 13)(12, 50, 52, 46, 49)(28)(29)(55)
Next we find a permutation g; such that B(2);, (C{***) = B(2);, s(Ce):

(1)(2)(3,12,17,14,19,10,7,18,8, 15,16, 13,6,5,4)(9, 11)
g = { (20,42, 25, 41,22, 45)(21, 39, 26, 47, 27, 40, 28, 44, 23, 43)(24, 46)
(29)(30,56, 52, 37, 38, 36, 48, 51, 53, 33, 55, 34, 32, 35, 49, 31)(50, 54).
G = (I, H4)"% is a generator matrix of the code C§'%. We can obtain another
generator matrix (I, H) from G. Then we can easily check that H is an Hadamard
matrix with Hall sets and its K—matrix is one of H; in (5.1). Therefore H is

equivalent to H, by [11]. Thus C, is equivalent to Cs.This completes the proof of
Theorem 1.

TABLE 2. The extremal codes

code | H | Negated columns (P) Class sizes
and rows (B)

1 Hyjcol: 1 56
row: 2,---,28

5 [ Hi|col 4, 5,6, 7, 8,12,17,19,08 9.6,6,6,6,6,6,6,0,0
row: 3, 6, 8, 9,10,11,13,19,20,22,25,26,28

3 H, | col: 4,5,8,21,22 2,2,2,2,6,6,6,6,6,6,6,6
row: 12,14,17,21,22

4 Hy | col: 4, 5, 9,13,14,18,22,23,27 2,18,18,18
row: 3, 7, 8,12,16,17,21,25,26

5 [ H:|col 4,5, 0,11,13,14,15,18,19 1,1,9,9,9,0.9
row: 12,16,17,21,22,23,25,26,27

6 | Hz | col 3.4,5,6,7,89,10,11 2,18,18,18
row: 12,13,14,15,16,17,18,19,20

159



(5.1)

Hy =

M1111 111111 111 111 111 111 111 1117

1010 000 111 101 110 110 001 010 010
1001000 111 110 011 011 100 001 001
1100 000 111 011 101 161 010 100 100

1111010 000 110 101 110 010 001 010
1111 001 000 011 110 011 001 100 001
1111100 000 101 011 101 100 016 100

1000111 010 110 110 101 010 010 001
1 000 111 001 011 011 110 001 001 100
1000 111 100 101 101 011 100 100 010

1001 010 010 010 000 111 101 110 110
1 100 001 001 001 000 111 110 011 011
1 010 100 100 100 000 111 011 101 101

1010 001 010 111 010 000 110 101 110
1001 100 001 111001 000 011 110 011
1100 010 100 111 100 000 101 611 101

1010 010 001 000 111 010 110 110 101
1 001 001 100 000 111 001 011 011 110
1100 100 010 000 111 100 101 101 011

1101 110 110 001 010 010 010 000 111
1110 011 011 100 001 001 001 000 111
1011101 101 010 100 100 100 000 111

1110 101 110 010 001 010 111 010 000
1011110 011 001 100 001 111 001 000
1101011 101 100 010 100 111 100 600

1,110 110 101 010 010 001 000 111 010
1011011 110 001 001 100 000 111 001

1101 101 011 100 100 010 000 111 100]

K(H;) =

W WO

H; =

"1111111 111 111 111 111 111 111 1117

1100 010 110 000 001 101 111 010 110
1010 001 011 000 100 110 111 001 011
1 001 100 101 000 010 011 111 100 101

1 011 001 010 101 000 001 110 111 1060
1101 100 001 110 000 100 011 111 010
1110 010 100 011 000 010 101 111 001

1001 110 001 001 101 000 100 011 111
1100 011 100 100 110 000 010 101 111
1010 101 010 010 011 000 001 110 111

1000100 110 111 100 110 100 100 110
1000010011 111 010 011 010 010 011
1 000 001 101 111 001 101 001 001 101

1011 000 100 110 111 100 110 010 001
1101 000 010 011 111 010 011 001 100
1110 000 001 101 111 001 101 100.010

1 001 011 000 010 011 111 100 101 010
1100 101 000 001 101 111 010 110 601
1010 1106 000 100 110 111 001 011 100

1111 010 011 100 001 110 000 100 101
1111 001 101 010 100 011 000 010 110
1111 100 110 001 010 101 000 001 011

1110 111 001 011 010 100 110 000 100
1011 111 100 101 601 010 011 000 010
1101 111 010 110 100 001 101 000 001

1100 101 111 100 011 610 100 011 000
1010 110 111 010 101 001 010 101 000
11001011 111 001 110 100 001 110 000

111 222
111 111 111

111 111 111 111 222
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