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ABSTRACT 

A set of blocks which can be a subset of only one t-( v, k, At) 

design has been termed a defining set of that design. In an earlier 

paper the author examined the smallest such sets of blocks for 

certain designs; that work is continued here for further designs. 

Improved lower bounds for the cardinality of a defining set are 

given for the affine and projective planes of order n. 

1. Defining Sets: definitions and basic results 

Any design we consider is a collection of b blocks (k-subsets) chosen from a set 

of v elements. The term block design refers to a collection of blocks chosen in such 

a way that every element belongs to exactly r blocks. If k < v we say the block 

design is incomplete. If every subset of t elements belongs to exactly At blocks 

for some constant At, we call the design a t-design and indicate its parameters by 

t-(v, k, Ad. When t 2 we say the design is balanced. In this paper, only 2-designs 

are considered so we will abbreviate 2-(v,k,At) to (V,k,A). 

In a previous paper (4] the author introduced the term defining set to refer to 

a set of blocks which can be a subset of only one t-( v, k, At) design, denoting the 

defining set by d( t-( v, k, At)). 
For example, the set of blocks R = {123, 145, 167} can he completed to a 

(7,3,1) design in two distinct ways: by adjoining either T1 = {246, 257, 347, 356} 

or T2 = {247, 256, 346, 357}. Hence R is not a defining set of either design. But 

the set of blocks Q {123, 145, 246} can be completed to a (7,3,1) design onlyby 

adjoining the blocks {167, 257, 347, 356}. Hence Q is a defining set of that design. 

A minimal defining set, denoted by dm(t-( v, k, At)), is a defining set no proper 

subset of which is a defining set. A smallest defining set, denoted by ds(t-(v, k, At)), 

is a defining set such that no other defining set has smaller cardinality. Clearly, 

every t-( v, k, At) design has a defining set (the whole design) and hence a smallest 

defining set. A d( t-( v, k, At)) defining set consisting of blocks of a particular 

t-(v, k,'x) design D is abbreviated to dD. 

The term trade is used to refer to two distinct collections of the same number of 

k-sets which contain precisely the same pairs (see Billington [1] and Gray [3J); for 
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example, the collections T1 and T2 given above. Such collections are also known 
as mutually balanced (Rodger [5]). 

Every permutation on the elements of V induces a mapping from a k-set to a 
k-set. An automorphism of a set of blocks X is a permutation on the elements 
which takes every block of X to a block of X. Let Aut(X) denote the group of all 
the automorphisms of X. 

In Gray [4], the following results were established for incomplete block designs; 
they are now given without proof. 

LEMMA 1.1 Every defining set of a t-( v, k, Ad design D contains a block of every 
possible trade TeD. 

LEMMA 1 Suppose S is a particular defining set of a (v, k, A) design D and 
p E Aut(D). Then p(S) is also a defining set of D and Aut(S) is a subgroup of 
Aut(D). 

LEMMA 1.3. No automorphism of a 2-(v, k, 1) design, with k 
single trGms:po'slt1011. 

2, consists of a 

LEMMA 1.4. Any d(2-( v, k, 1)) defining set S, for k 
occurring in its blocks. 

has at least (v-I) elements 

LEMMA 1.5. Suppose each of the elements i and j appears only once in a 
d( 2-( v, k, 1)) defining set S, where k > 2. Then i and j cannot appear in the same 
block of S. 

THEOREM 1.6. For every k,l) D,withk 2, 

IdDI 

Note that in the case of the (7,3,1) design the bound IdDI ~ 2: 6 = 3, 

and thus the set of three blocks Q previously must be a smallest defining set. 
In the effect on the bound of the value of 'x, it is worth 

observing that a defining set may have zero. This is true, for ex;amlpll~, 
of a ds (4, 3, 

2. Srnallest Defining Sets of Affine Planes 

An (n 2 , n, 1) design also known an affine plane of order n. Affine 
are known to exist whenever n is a power of a prime. The of whether 
affine planes exist for other values of n in general, open, but the non-existence 
of an infinite family of affine planes follows from the Bruck-Ryser-Chowla theorem 
[7]. For the non-existence of the affine plane of order six, the smallest case, also see 
[6]. Affine planes of orders two, three, four and five are unique up to isomorphism 
[2]. 

A resolution class of a design is a set of blocks in which ea.ch of the v elements 
appears in exactly one block. A design is said to be resolvable if the set of blocks 
of the design can be partitioned into resolution classes. 
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The following results are well known for affine planes: 

.. the (n2 + n) blocks are uniquely resolvable into (n + 1) resolution classes, 

each of n blocks; 
.. any two blocks from distinct resolution classes intersect in precisely one 

element. 

An affine plane PI of order two, or (4,2,1) design, has six blocks in three 

resolution classes, as follows: 

12,34; 13,24j 14,23. 

Similarly an affine plane P2 of order three, or (9,3,1) design, has twelve blocks 

in four resolution as follows: 

123,456,789; 147,258,369; 159,267,348; 357,168,249. 

Clearly, Ids ( 4,2,1)1 O. We now establish a bound for the number of blocks in 

a defining set of an affine plane in the general case. 

LEMMA 2.1. If S is a defining set of an affine plane of order n > 2, and if 

2(n - 1), 

then S consists of (n-1) blocks from each of two resolution classes, 

PROOF: Let S be a defining set of an affine plane D of order n > 2. The lower 

bound from Theorem 1.6 has value 

2(v - 1) 

k+l 

2{n2 
- 1) 

(n + 1) 
2(n-1). 

Suppose 181 = 2(n-1). By Lemmas 1.4 a.nd 1.5, the2(n-l)n entries in the 

blocks of S must conta.in at least (n2-1) elements, with at most 2{n-l) elements 

appearing precisely once. Then there are at least n 2 --:2n + 1 = {n-l)2 remaining 

elements which must occur at least twice in the remaining 2( n-l)2 entries. This is 

only possible if precisely (n-l)2 elements occur exactly twice. 

We now show that the only such subsets of 2{n-1) blocks of an affine plane are 

those formed by taking (n-l) blocks from each of two resolution classes. 

Let {Ri Ii = 1,2, ... ,n+l} he the unique collection of resolution classes of D 

and let ai be the number of blocks of S belonging to the ith resolution class, for 

i= 1,2, .. " n + 1. Now for each ai, 

(1) o S ai S (n-l) , 

since if ai = n for some i, then all n2 elements would appear in S. This is impossible 

since S contains only 2(n-l) + (n-1)2 = n 2-1 elements. Clearly, 

(2) 
n + 1 
L ai = 2(n-l). 

i = 1 
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Also, let I be the number of pairs of blocks of D intersecting in precisely one 
element. 

from (2). 

1 
The rninlmum possible value of I will occur when a? is a maximum. We find z 
this maximum. 

Suppose a set of values A {ai IiI, 2, .'" n + I} satisfies (1) and (2). Further 
suppose 1 S aw av < (n-1) for two values v and w. Then the set of 
values A' formed by replacing av by + 1), aw by (aw-1), and leaving the other 
values unchanged, must also (1) and 

Now 

+ a~ + 2( av aw) + 2 
22· > av + aw SInce av aw. 

Hence for any such set A with two non-zero values of ai not equal to (n-l), there 
exists another set the conditions with a sum of squares. Since a 
maximum sum of squares exists, it must occur when two resolution classes 
each contribute (n-1) blocks to and the remainder have no blocks in S. 

Then I has a minimum value of 

Only in this case is the minimum number of (n-l)2 of blocks intersecting in 
one element achieved. Each pair of blocks which intersects in exactly one element 
corresponds to an element occurring twice in the blocks of S, establishing the 
lemma. 0 

THEOREM 2.2. Every smallest defining set of a (9,3,1) design D contains precisely 
two blocks from each of two resolution classes of D. 

PROOF: By Lemma 2.1 it is suITtcient to show that four blocks of a (9, 3, 1) de­
sign, comprising any two blocks of any two resolution classes, form a defining set. 
Consider the (9, 3, 1) design P2 given earlier. Any two blocks of a resolution class 
determine the entire class, and any pair of resolution classes is isomorphic to any 
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other pair. So without loss of generality we take S = {123, 456, 147, 258} and 

suppose that S is a subset of a (9, 3, 1) design D. Completing resolution classes, 

D must also contain blocks 789 and 369. Pair 15 must occur in a block 159, since 

pairs 12, 13, 45, 56, 17 and 58 have already occurred. We proceed similarly to the 

unique design P2, and hence S is a smallest defining set. 0 

While the bound given in Theorem 1.6 is achieved for the affine plane of order 

three, we now show it is never met for affine planes of larger order . 

THEOREM 2.3. 

PROOF: Suppose we have a defining set S of an affine plane P of order n on 

elements V {xij 1 i, j = 1, ... , n}. 

By Theorem 1.6, lSI? 2(n-1). Suppose lSI = 2(n-1). By Lemma 2.1, S must 

consist of (n-1) blocks from each of two resolution classes. Since S fully defines 

these two classes and since any two resolution classes of an affine plane of order 

n are isomorphic, we can assume without loss of generality that the two classes 

containing the blocks of S are Rl and where the ith element of the jth block 

of Rl is Xji and of R2 is Xij' Suppose and belong to some affine plane P. 

Consider the permutation 

The effect of p on R1 is to interchange the first two blocks, while R2 undergoes 

only a reordering of the first two elements in each of its blocks . Hence p is an 

automorphism of Rl U R2 
Now P must contain a block bcontaining pair x41 x32, since n > 3, with 

b 1. R1 U . The same pair must also belong to p(b). Hence if P = p(P) 

it would be necessary that b = p(b) and we show this is impossible. By the 

intersection property of an affine plane, b must contain elements xll and x2k' for 

some unique values I and k, from the first two blocks of R1 respectively. These 

elements x 11 and x2k are the elements affected by p, and thus for b p(b) we 

require {xll,x2k} = {x2l,xlk} which implies k = l. Then pair xllx2l occurs in 

b rt Rl U R2 and in the lth block of R21 which is impossible. Hence b -I- p(b) and 

thus P #- p(P). (It can be similarly shown that all blocks of P\(R1 U R2) do not 

belong to p(P)). Hence Rl U R2 C P and R1 U R2 C p(P), giving that S belongs 

to at least two affine planes of order n. Hence S is not a defining set. Since no 

defining set S of cardinality 2(n-l) can exist, the theorem is proven. 0 

EXAMPLE 2.4. 
For n = 4, we have Ids (16, 4, 1)1 = 7. 

PROOF: By Theorem 2.3, Ids (16, 4, 1)1 > 6. We show that a defining set of an 

affine plane of order four can be formed by taking three blocks from each of two 

resolution classes and any block from a third class. 
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Without loss of generality we take the six blocks from the two resolution classes 

Rl = {1234, 5678, 9ABC, DEFG} and {159D, 26AE, 48CG}. 

We attempt to complete these to a (16,4, 1) design. Consider element F. Since 
pairs 12 and 2A have occurred two cases are possible. 

Case (i). 
The remaining blocks containing P are of the form 

Fl * * with two elements from {6, 8, C} 

F2 * * with two elements from {5, 8, 9, e}, 
FA * * with two elements from {4, 5, 8}. 

Element 4 must occur, and cannot occur with Hence we have block P A45. 
Since 86 and 8C have occurred we must also have blocks F16C and 1"289. 
Now consider the two remaining blocks containing 1. These rnust contain elements 
{7,8, B, G}. Since EG and 7 B have the 
blocks must be l.7AG and 18BE. A now occurred four 
occurrence must be in block 38AD. Similar considerations for element 3 force blocks 
35CE and 369G. We now have three blocks from each of two further resolution 

blocks 46BD and is triviaL 

Case (ii). The rernallllIllg blocks \..-Vl.HO,UiJ.U}:<, F are of the form 

and F * *, 

with clements chosen from 5,6,8,9, C}. 
Now dement occurred with 4, 5, 6 and C. If we have hlock 

then block FIA* be since A6 and AC have 
occurred. Hence must have block FlA8. Since 2 has occurred with 4 and 6, 
and C has occurred with 4 and 9, we must have blocks F25C and F469. 

N ow consider the blocks 1 Since B7, B C 
and EG have these must he l7CE and 16BG. Element 6 has its 
II nal occurrence in block 36C D and the blocks are now found. 
Note that this is ohtainable from that in case (i) the permutation 
p (15)(26)(37)(48), a.nd the have intersection U R2' 

Since two ways of the two resolution classes are and blocks 
of these two the only blocks common to both the proof is 
complete. 

3. Smallest JlJ'I::.tu.,uun Sets of Projective Planes 

An (n2 +n+l,n+l, 1) design is also known as projective plane of order n. 
Projective planes are known to have the following properties (see [2]): 

Ii any two of the (n2+n+l) blocks intersect in precisely one element.; 
II any afIine plane of order n can be extended to a projective plalle of order 

nj 

.. the residual design, formed by taking any block and deleting each of its 
elements from the remaining blocks, is an affine plane of order n. 
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The (7,3,1) design, given in Section 1, is a projective plane of order two. Projec­
tive planes of orders two, three, and four are known to be unique up to isomorphism 
(see [2], p144). 

We use the results of Section 2 for affine planes to consider the smallest defining 
sets of projective planes. 

THEOREM 3.1. If S is a defining set of a projective plane of order n > 2, tben 

2(v 1) 
lSI 2 2n > k + 1 + 1. 

PROOF: We consider the cases of n 3 and n > 3 separately. 

Case (i). 
If n 3, BU ppose S is a d( 13, 4, 1) defining set. Then we need to show 

2 x 12 
lSI 26> + 1. 

~U"on~Jse S consists of five blocks. From Lemmas 1.4 and at least twelve of 
the thirteen elements must appear in S, with no more than five elements occurring 
exactly once. Let (aI' a2, a3) represent the number of elements occurring once, 
twice or three times respectively, since it is trivial that no element can appear four 
times. The only possibilities are (5,6,1) and 8,0). The five blocks of S give rise 
to (~) = 10 pairs of blocks, each pair intersecting in exactly one element. Case 
(5,6,1) accounts for only nine such pairs and case (4,8,0) for only eight. Hence at 
least 2n 6 blocks are necessary. 

Case (ii). 
Suppose S is a d(n2+n+1,n+1, 1) defining set, where n > 3. Then, by Theorem 

1.6, 

lSI> 2(v-1) = 2(n2+n) =2(n_1)+_4_. 
- k+l n+2. n+2 

Since n > 3, this gives lSI 2 2n-1. 
Now suppose lSI = 2n-1 and S has blocks bi1 for i 1,2, ... , 2n-1. Suppose 

b2n _ 1 has elements el, e2, ... , en + l' Let S' be the set of blocks obtained by 
deleting these elements from each bi1 for i = 1,2, ... , 2n-2. Now S' consists of 
(2n-2) blocks of an affine plane of order n and, by Theorem 2.3, S' is not a defining 
set. Hence S' belongs to at least two affine planes, Aland A2 say. Further, two 
blocks of S' are in the same resolution class of Al if and only if they are in the 
same resolution class of A2' 

Let R} be the j th resolution class of Ai' for j = 1,2, ... , n+ 1 and i = 1,2, where 

we ensure that R1 corresponds to the resolution class obtained by deleting element 
J 

ej' and that the blocks of S' in R] are also in RJ. 
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Now take Rj U 5 ej} to mean the set of blocks formed by adjoining element ej 

to each block of R~., for j 1, n+ 1, 1,2 . 
. J 

Then S C {Rj U {ej} I j 1,2, ... ,n + I} U {b2n 1}, for i 1,2, where each 

is a distinct projective of order n. Thus S is not a defining set and hence no 
such set of cardinality 2n-l exists. 

Together, cases (i) and (ii) the required result. D 

EXAMPLE 3.2. A smallest deJllnJng set of 
six blocks. 

of order three contains 

PROOF: Theorem 3.1 we need only find a d.s(13,4, 1) defining set comprising 
six blocks. 

Take the set of blocks 

{0139, 124A, 235B, 4570, 5681} 

aone:ti,re:cl three 
nnp"'1r~'rl three 

4,1) 

EXAMPLE A 0H1Ull<,i:H U~j'UUU'n sct of of order four 

PROOF: By Theorem 3.1 we need only find d.s(21,5,1) '-<v'LUU,UI"> 

blocks. Take the set of blocks 

0569J 

125FH 
9AD24 

on ele,ments 

{i, 
be ODF3K 

the deleted element. 

o 
1 
4: 

G: 
E: 

569J 
25FH 
9AD2 
CD57 

67AK1 
CDG57 

HIOAC 
89C13 

'-'UJLLHl'JUj,UF. 0, which must be based on elements 
4D, DG, 13, iF and iK these must 

278B 

67AK 
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deleting the known block 
the resolution class from 

ACHI 
389C 

DF3K 

BDIJ 



Now from the proof of Example 2.4 we know that two resolution together 

with any additional block, defines a (16,4,1) design. Hence the remaining blocks in 

the resolution classes above are known. It only remains to adjoin elements 0,1.4. G 

and E to appropriate classes. We know the classes to be to 0,1,4 and G, 

and E must adjoin the remaining class. The projective can thus be uniquely 

completed, the full set of blocks being those obtained by 014EG modulo 21. 

o 
4. Smallest uenulLUg Sets of the (6, 3, 2) and (11, 5, 2) JLJ .... "' .. "'.u.;:, 

Only with'\ 1, for which Theorem 1.6 

considered in this paper. Smallest defining sets of 

with in Results are now for two further 

so far been 
were dealt 

EXAMPLE 4.1. A smallest defining set of a (6,3,2) contains three blocks. 

PROOF: Consider the three blocks 0200, 1300 and 0300 in design based on el-

ements {0,1, 3,4, If these belong to (6,3,2) then so must blocks 

1400 and 2400. Now consider the blocks 4; these must be 043, 

04* and 4", '" with elements chosen from {1,2, Pair 03 has 

occurred and if we take block 042 the remaining block containing 0 must 

contain element 1 twice. Hence we must have 043, 041 and 423, leading to final 

blocks 012 and 123. This is the design obtained by blocks 012 and 0200 

modulo 5. 
To show that no smaller defining set consider each possible pair of blocks 

of the design above. For any such pair S we find an automorphism of S which is not 

an automorphism of the full design; for example, (03) is an automorphism of blocks 

S {012,123} which takes block 0200 to 2300, not in the design. By Lemma 1.2, 

S is not a. defining set. 

Such a permutation can he found for all pairs of blocks and hence at least three 

blocks are required for a defining set. Since the (6,3,2) design is unique up to 

isomorphism for instance, [7]) the proof is complete. 0 

We now consider the (11,5,2) design, which is also unique up to isomorphism. 

We exa.mine the particular design D obtained by cycling 13459 modulo 11 on 

elements {O, 1,2, ... ,9, A}. 

LEMMA 4.2. A defining set of an (11,5,2) design contains B,t least five blocks. 

PROOF: Suppose there is a defining set consisting of four blocks. Two cases are 

possible. 

Case (i). There is an element common to all four blocks. 

Without loss of generality, let the element 1 occur in each of the four blocks of 

a defining set. It is immaterial which four blocks are chosen, as in any event we 

know all five blocks containing 1, namely 13459, 46781, 8.4015, AI237 and 90126. 

Then the remaining six blocks can be found ill only two ways: 

T3 = {2456A, 24830,25879,4079.4, 869A3, 50367}j 

T4 {24570, 248A9, 25836, 46A03, 80379, 56A 79}. 
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Hence such a set of four blocks cannot be a defining set. 

Case (ii). No element is common to all four blocks. 
We show that some element occurs three times. Without loss of generality, take 

the first two blocks to be 13459 and 2456A, since any other two blocks can be taken 
to these under the automorphism 

f( x) ax + b, for a = 3,9,5,4, 1 and b E 

If 4 or 5 are not to occur three times, the remaining two blocks must be chosen from 
689A3, 90126 and A1237, resulting in each case in some element occurring three 
times. We can assume that element 1 occurs in three of the four blocks, 
illcluding 13459 and 46781. Then for each other choice of a block containing 1 and 
a block not containing 1 we find an of the four blocks which is not 
an automorphism of the full design D; for blocks 13459, 46781, 8AOl5 
and 2456A have (39) rt Aut(D). 

It can be verified that every such set of four blocks has an automorphism which 
raIlSJ:'OS.ltl()n. and thus cannot be a set of this D. Cases (i) 

o 
EXAMPLE 4.3. A smallest defining set of an (11,5,2) contains five blocks. 

PROOF: We refer to case (i) of Lemma 4.2. An (11,5,2) defining set can be ob-
tained by taking any four blocks 1, with a single block of 13; 
for example, 46781, 8A015, A1237 and 2456A. with Lemma 4.2, 
the proof is 0 

ACKNOWLEDGEMENTS 

I would like to thank Professor Anne Penfold Street for her assistance in the 
preparation of this paper. The work presented in this paper has been sponsored 
by the Australian Research Council. 

REFERENCES 

1. Elizabeth J. Billington, Further Conatructiona of Irreducible Designs, Con-
gressus Numerantium 35 (1982),77-89. 

2. P. "Finite Geometries," New York, 1967. 
3. Ken Gray, De8igns Carried by a Code, Ars Combinatoria 23B (1987), 257-271. 
4. Ken Gray, On the "Minimum Number of Blocka Defining a Deaign, Bulletin of 

the Australian Mathematical Society 41 (t.o 
5. G.A. Rodger, Triple Syatems with a Fixed Number of Repeated Blocks, Journal 

of the Australian Mathematical Society 41 (1986), 180-187. 
6. D.R. Stinson, A ahort proof of the non-existence of a pair of orthogonal Latin 

squares of order .Journal of Combinatorial Theory A36 (1984), 373-376. 
7. Anne Penfold Street and Deborah J. Street, "Combinatorics of Experimental 

Design," Clarendon Oxford, 1987. 

100 


