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ABSTRACT

A set of blocks which can be a subset of only one t—(v,k, ;)
design has been termed a defining set of that design. In an earlier
paper the author examined the smallest such sets of blocks for
certain designs; that work is continued here for further designs.
Improved lower bounds for the cardinality of a defining set are
given for the affine and projective planes of order 7.

1. Defining Sets: definitions and basic results

Any design we consider is a collection of b blocks (k-subsets) chosen from a set
of v elements. The term block design refers to a collection of blocks chosen in such
a way that every element belongs to exactly r blocks. If k < v we say the block
design is incomplete. If every subset of ¢ elements belongs to exactly Ay blocks
for some constant A, we call the design a {~design and indicate its parameters by
t—(v,k,As). Whent > 2 we say the design is balanced. In this paper, only 2-designs
are considered so we will abbreviate 2-(v,k, A¢) to (v, k, A).

In a previous paper (4] the author introduced the term defining set to refer to
a set of blocks which can be a subset of only one t—(v,k, A¢) design, denoting the
defining set by d(t—(v, k).

For example, the set of blocks R = {123, 145, 167} can be completed to a
(7, 3, 1) design in two distinct ways: by adjoining either T = {246, 257, 347, 356}
or Ty = {247, 256, 346, 357}. Hence R is not a defining set of either design. But
the set of blocks @ = {123, 145, 246} can be completed to a (7, 3, 1) design only by
adjoining the blocks {167, 257, 347, 356}. Hence Q is a defining set of that design.

A minimal defining set, denoted by dm(t-(v,k, Ap)), is 2 defining set no proper
subset of which is a defining set. A smallest defining set, denoted by ds(t-(v, k,Ap)),
is a defining set such that no other defining set has smaller cardinality. Clearly,
every t—(v, k, A¢) design has a defining set (the whole design) and hence a smallest
defining set. A d(t~(v,k,A¢)) defining set consisting of blocks of a particular
t—(v, k, ) design D is abbreviated to dD.

The lerm trade is used to refer to two distinct collections of the same number of
k—sets which contain precisely the same pairs (see Billington (1] and Gray [3]); for
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example, the collections T] and Ty given above. Such collections are also known
as mutually balanced (Rodger {5]).

Every permutation on the elements of V induces a mapping from a k-set to a
k-set. An automorphism of a set of blocks X is a permutation on the elements
which takes every block of X to a block of X. Let Aut(X) denote the group of all
the automorphisms of X.

In Gray [4], the following results were established for incomplete block designs;
they are now given without proof.

LEMMA 1.1. Every defining set of a t(v,k, A\¢) design D contains a block of every
possible trade T' C D.

LEMMA 1.2. Suppose S is a particular defining set of a (v,k,A) design D and
p € Aut(D). Then p(S) is also a defining set of D and Aut(S) is a subgroup of
Aut(D).

LEMMA 1.3. No automorphism of a 2—{v,k,1) design, with k > 2, consists of a
single transposition.

LEMMA 1.4. Anyd(2-(v,k,1)) defining set S, for k > 2, has at least (v-1) elements
occurring in its blocks.

LEMMA 1.5. Suppose each of the elements ¢ and j appears only once in a
d(2-(v,k,1)) defining set S, where k > 2. Then i and j cannot appear in the same
block of §S.

THEOREM 1.6. For every 2-(v,k,1) design D, with k > 2,

2(v ~1)

| > =),
412 =

2x6

Note that in the case of the (7,3;1) design the bound gives |dD| > =3,

and thus the set of three blocks @ given previously must be a smallest defining set.

In considering the effect on the bound of changing the value of A, it is worth
observing that a defining set may have cardinality zero. This is true, for example,
of a ds(4,3,2).

2. Smallest Defining Sets of Affine Planes

An (nz,n,l) design is also known as an affine plane of order n. Affine planes
are known to exist whenever n is a power of a prime. The question of whether
affine planes exist for other values of n is, in general, open, but the non-existence
of an infinite family of affine planes follows from the Bruck-Ryser-Chowla theorem
[7]. For the non-existence of the affine plane of order six, the smallest case, also see
[6]. Affine planes of orders two, three, four and five are unique up to isomorphism
[2].

A resolution class of a design is a set of blocks in which each of the v elements
appears in exactly one block. A design is said to be resolvable if the set of blocks
of the design can be partitioned into resolution classes.
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The following results are well known for affine planes:
e the (n2 +n) blocks are uniquely resolvable into (n + 1) resolution classes,

each of n blocks;
e any two blocks from distinct resolution classes intersect in precisely one

element.
An affine plane P; of order two, or (4,2,1) design, has six blocks in three
resolution classes, as follows:

12,34; 13,24; 14,23.

Similarly an affine plane Py of order three, or (9,3,1) design, has twelve blocks
in four resolution classes, as follows:

123, 456, 789; 147,258, 369; 159,267,348; 357, 168,249.

Clearly, |ds(4,2,1)| = 0. We now establish a bound for the number of blocks in
a defining set of an affine plane in the general case.

LEMMA 2.1. If S is a defining set of an affine plane of order n > 2, and if

5= 202D <o),

then § consists of (n-1) blocks from each of two resolution classes.

PROOF: Let § be a defining set of an affine plane D of order n > 2. The lower
bound from Theorem 1.6 has value
20v-1)  2n® 1)
o rp e
Suppose |S| = 2(n-1). By Lemmas 1.4 and 1.5, the 2(n-1)n entries in the
blocks of § must contain at least (n2~1) elements, with at most 2(n-1) elements
appearing precisely once. Then there are at least n2-2n+1= ('n.—l)2 remaining
elements which must occur at least twice in the remaining 2(n~1)2 entries. This is
only possible if precisely (n«—l)2 elements occur exactly twice.
We now show that the only such subsets of 2(n-1) blocks of an affine plane are
those formed by taking (n—1) blocks from each of two resolution classes.
Let {R; | i = 1,2, ...,n+1} be the unique collection of resolution classes of D
and let a; be the number of blocks of § belonging to the ith resolution class, for
i=1,2,..,n+ 1. Now for each a;,

(1) 0 <a; < (n-1),
since if a; = n for some 1, then all n2 elements would appearin §. Thisis impossible
since § contains only 2(n-1) + (n—l)2 = n2-1 elements. Clearly,

n+1
(2) 3 4 =2(n-1).

1=1
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Also, let I be the number of pairs of blocks of D intersecting in precisely one
element.

n n+1
I=2.| 2 w9
i=117=12+4+1

n+1 2 n+ 1

1 +
=gl X a) - X

1=1 i=1
1 [ n+1
=3 4(n — 1)2 - Z a2 from (2).
L 1 =1
ntl,
The minimum possible value of I will occur when 3 a? is a maximum. We find
this maximum. 1 =1

Suppose a set of values 4 = {a; | i = 1,2,...,n+1} satisfies (1) and (2). Further
suppose 1 < ayy < ay < (n-1) for two particular values v and w. Then the set of
values A’ formed by replacing ay by (avy + 1), aw by (aw-1), and leaving the other
values unchanged, must also satisfy (1) and (2).

Now

(av —|—1)2+(aw - 1)2 = a%v{-ag} + 2(ay — o) + 2
2

> ay -+ azw since ay > ayw.

Hence for any such set A with two non-zero values of a; not equal to (n-1), there
exists another set satisfying the conditions with a higher sum of squares. Since a
maximum sum of squares exists, it must occur when precisely two resolution classes
each contribute (n—1) blocks to S, and the remainder have no blocks in S.

Then I has a minimum value of
%[4(17. 12 o - 1)) = (n - 1)2.

Only in this case is the minimum number of (n-1)? pairs of blocks intersecting in
one element achieved. Each pair of blocks which intersects in exactly one element
corresponds to an element occurring twice in the blocks of §, establishing the
lemma. [J

THEOREM 2.2. Every smallest defining set of a (9,3,1) design D contains precisely
two blocks from each of two resolution classes of D.

ProoF: By Lemma 2.1 it is sufficient to show that four blocks of a (9, 3, 1) de-
sign, comprising any two blocks of any two resolution classes, form a defining set.
Consider the (9, 3, 1) design Py given earlier. Any two blocks of a resolution class
determine the entire class, and any pair of resolution classes is isomorphic to any
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other pair. So without loss of generality we take § = {123, 456, 147, 258} and
suppose that § is a subset of a (9,3, 1) design D. Completing resolution classes,
D must also contain blocks 789 and 369. Pair 15 must occur in a block 159, since
pairs 12, 13, 45, 56, 17 and 58 have already occurred. We proceed similarly to the
unique design Py, and hence § is a smallest defining set. O

While the bound given in Theorem 1.6 is achieved for the affine plane of order
three, we now show it is never met for affine planes of larger order .

THEOREM 2.3.

Forn > 3, we have

ds(nz,n,l)l > 2(n - 1).

PROOF: Suppose we have a defining set § of an affine plane P of order n on
elements V = {z;; l4,7 =1,..,n}.

By Theorem 1.6, |S] 2 2(n-1). Suppose |S| = 2(n-1). By Lemma 2.1, § must
consist of (n—1) blocks from each of two resolution classes. Since S fully defines
these two classes and since any two resolution classes of an affine plane of order
n are isomorphic, we can assume without loss of generality that the two classes
containing the blocks of § are Ry and Rg where the ith element of the jth block
of Ry is zj; and of Ry is z;;. Suppose Ry and Rg belong to some affine plane p.

Consider the permutation
p= (1311w21)(a‘,12w22)...(m1jm2j)..'(:clann), for j=1,2,..,n.

The effect of p on Ry is to interchange the first two blocks, while Ry undergoes
only a reordering of the first two elements in each of its blocks . Hence p is an
automorphism of Ry U Rz

Now P must contain a block b containing pair z41z39, since n > 3, with
b ¢ Ry UR;. The same pair must also belong to p(b). Hence if P = o(P)
it would be necessary that b = p(b) and we show this is impossible. By the
intersection property of an affine plane, b must contain elements ¢1; and 29z, for
some unique values | and k, from the first two blocks of Ry respectively. These
elements z; and g, are the elements affected by p, and thus for b = p(b) we
require {1/, 29k} = {wqy, @1} which implies k = [. Then pair z1jzg; occurs in
b ¢ Ry U Ry and in the Ith block of Rg, which is jmpossible. Hence b # p(b) and
thus P # p(P). (It can be similarly shown that all blocks of P\(Ry U Rg) do not
belong to p(P)). Hence R U Ry C P and Ry U Ry C p(P), giving that S belongs
to at least two affine planes of order n. Hence § is not a defining set. Since no
defining set S of cardinality 2(n-1) can exist, the theorem is proven. O

EXAMPLE 2.4.
Forn = 4, we have |ds(16,4, 1)/ =7.

PRrOOF: By Theorem 2.3, |ds(16, 4, 1)| > 6. We show that a defining set of an
affine plane of order four can be formed by taking three blocks from each of two
resolution classes and any block from a third class.
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Without loss of generality we take the six blocks from the t wo resolution classes
Ry = {1234, 5678, 9ABC, DEFG} and Ro = {159D, 26A E, 37BF, 48CG}.

We attempt to complete these to a (16, 4, 1) design. Consider element F. Since
pairs 12 and 24 have occurred two cases are possible.

Case (i). .
The remaining blocks containing F' are of the form

F1 %+ with two elements from {6, 8, C'},
F2x % with two elements from {5, 8, 9, C},

FAxx with two elements from {4, 5, 8}.

Element 4 must occur, and cannot occur with 8. Hence we have block F A45.
Since pairs 86 and 8C have occurred we must also have blocks F16C' and F289.
Now consider the two remaining blocks containing 1. These must contain elements
{7,8,4, B, E,G}. Since pairs 87, 8G, AE, AB, EG and 7B have occurred, the
blocks must be 17TAG and 18 BE. A has now occurred four times, so its final
occurrence must be in block 384 D. Similar considerations for element 3 force blocks
35CFE and 369G. We now have three blocks from each of two further resolution
classes, forcing blocks 46 BD and 27C'D, and completion is trivial.

Case (ii). The remaining blocks containing F' are of the form

Fl1Ax, F2x* and F &% x,

with remaining clements chosen from {4,5,6,8,9,C}.

Now element 8 has already occurred with 4, 5, 6 and C'. If we have block F'289,
then block F1Ax cannot be completed since pairs 14, 15, A6 and AC have already
occurred. Hence we must have block F'148. Since 2 has occurred with 4 and 6,
and C has occurred with 4 and 9, we must have blocks F25C and F469.

Now consider the remaining blocks containing 1. Since pairs 6E, B7, BC
and FEG have occurred, these must be 17CE and 16BG. Element 6 has its
final occurrence in block 36C D and the remaining blocks are now easily found.
Note that this design is obtainable from that given in case (1) by the permutation
p = (15)(26)(37)(48), and the designs have intersection Ry U Ry.

Since two ways of completing the two resolution classes are possible, and blocks
of these two classes are the only blocks commoen to both designs, the proof is
complete. [J

3. Smallest Defining Sets of Projective Planes

An (n2+n+1,n+1, 1) design is also known as a projective plane of order n.
Projective planes are known to have the following properties (see [2]):

any two of the (n2+n+1) blocks intersect in precisely one element;
any alline plane of order n can be extended to a pro jective plane of order
n;

e the residual design, formed by taking any block and deleting each of its
elements from the remaining blocks, is an afline plane of order n..
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The (7,3,1) design, given in Section 1, is a projective plane of order two. Projec-
tive planes of orders two, three, and four are known to be unique up to isomorphism
(see [2], pl44). ‘

We use the results of Section 2 for affine planes to consider the smallest defining
sets of projective planes.

TugoREM 3.1. If S is a defining set of a projective plane of order n > 2, then

2(v - 1)

>
1§51 > 2n > A

+ 1.

PrOOF: We consider the cases of n =3 and n >3 separately.

Case (i).
If n = 3, suppose S is a d(13,4,1) defining set. Then we need to show

12

2
5] 26> 22— 1.

Suppose S consists of five blocks. From Lemmas 1.4 and 1.5, at least twelve of
the thirteen elements must appear in S, with no more than five elements occurring
exactly once. Let (ay, ag, ag) represent the number of elements occurring once,
twice or three limes respectively, since it is trivial that no element can appear four
times. The only possibilities are (5,6,1) and (4,8,0). The five blocks of S give rise
to (g) — 10 pairs of blocks, each pair intersecting in exactly one element. Case
(5,6, 1) accounts for only nine such pairs and case (4,8,0) for only eight. Hence at
least 2n = 6 blocks are necessary.

Case (ii). ,

Suppose 5 is a d(n2+n+1,n+1, 1) defining set, where n > 3. Then, by Theorem
1.6,
(w=1) 2(n?+n) 4

(2(n 1)+ —.

2
>
1512 n+2

E+1 ~ n+2
Since n > 3, this gives |S| > 2n~1.

Now suppose |S| = 2n-1 and § has blocks b;, for i = 1,2,...,2n-1. Suppose
bgn, — 1 has elements ey,€9,...€n 4 1- Let S' be the set of blocks obtained by
deleting these elements from each b;, for i=1,2,...,2n-2. Now §' consists of
(2n-2) blocks of an affine plane of order n and, by Theorem 2.3, §' is not a defining
set. Hence S' belongs to at least two affine planes, A1 and Ag say. Further, two
blocks of §' are in the same resolution class of Ay if and only if they are in the
same resolution class of Ag.

Let R;- be the jth resolution class of 4;, for j = 1,2, ...,nn+1 and ¢ = 1,2, where
we ensure that R} corresponds to the resolution class obtained by deleting element

€5 and that the blocks of ' in R; are also in R?.
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Now take R} U {ej} to mean the set of blocks formed by adjoining element e;
to each block of R;, for j = 1,2,...,n+1,7 = 1,2

Then § C {R; Ufej} li=12n+1 YU {by,, 1}, for i = 1,2, where each
is a distinct projective plane of order n. Thus § is not a defining set and hence no
such set of cardinality 2n-1 exists.

Together, cases (i) and (ii) give the required result. [

EXAMPLE 3.2. A smallest defining set of a projective plane of order three contains
six blocks.

PROOF: By Theorem 3.1 we need only find a ds(13,4,1) defining set comprising
six blocks.
Take the set of blocks

S = {0139, 1244, 235B, 346C, 4570, 5681}

on elements {0,1,2,...,9, 4, B,C}.

Elements 1, 3, 4 and 5 have each appeared three times, forcing blocks 3784,
489B, 59AC and 17TBC. Elements A, C and 9 have now also appeared three times,
giving the remaining three blocks 2679, 06485 and 028C of the (13,4,1) design
obtained by cycling 0139 modulo 13.  [J

EXAMPLE 3.3. A smallest defining set of a projective plane of order four contains
eight blocks.

ProoF: By Theorem 3.1 we need only find a dg(21,5,1) defining set containing
eight blocks. Take the set of blocks

05697 78B02 HIOAC
125FH 67AKL 89C13
9AD24 CDGB7

on elements {0,1,2,...,9,4,B,...,K}.

Consider the remaining blocks containing 0, which must be based on elements
{1,8,4,D,E,F,G,K}. Since pairs 4D, DG, 13, 1F and 1K have occurred, these must
be ODF3K and 04GE1.

Since 1 has now occurred in four blocks, its remaining occurrence must be in
1BDIJ. We now have eleven blocks, including all those containing 0 or 1.

Now we consider the residual affine plane formed by deleting the known block
04EG1. This plane has blocks below, arranged by the resolution class resulting from
the given deleted element.

0: 5697 278B ACHI DF3K
1: 25FH 67AK 389C BDIJ
4 9AD2

G: CD57

E:
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Now from the proof of Example 2.4 we know that two resolution classes, together
with any additional block, defines a (16,4,1) design. Hence the remaining blocks in
the resolution classes above are known. It only remains to adjoin elements 0,1,4,G
and E to appropriate classes. We know the classes to be adjoined to 0,1,4 and G,
and E must adjoin the remaining class. The projective plane can thus be uniquely
completed, the full set of blocks being those obtained by cycling 014EG modulo 21.
O

4. Smallest Defining Sets of the (6, 3, 2) and (11, 5, 2) Designs

Only designs with A = 1, for which Theorem 1.6 applies, have so far been
considered in this paper. Smallest defining sets of 2-(7,3,2) designs were dealt
with in [4]). Results are now given for two further designs with A = 2.

EXAMPLE 4.1. A smallest defining set of a (6,3,2) design contains three blocks.

ProoF: Consider the three blocks 0200, 1300 and 0300 in a design based on el-
ements {0,1,2,3,4,00}. If these belong to a (6,3,2) design, then so must blocks
1400 and 24c0. Now consider the remaining blocks containing 4; these must be 043,
04% and 4  * with remaining elements chosen from {1,2,3}. Pair 03 has already
occurred twice, and if we take block 042 the remaining block containing 0 must
contain element 1 twice. Hence we must have 043, 041 and 423, leading to final
blocks 012 and 123. This is the design obtained by cycling blocks 012 and 0200
modulo 5.

To show that no smaller defining set exists, consider each possible pair of blocks
of the design above. For any such pair S we find an automorphism of § which is not
an automorphism of the full design; for example, (03) is an automorphism of blocks
§ = {012,123} which takes block 0200 to 2300, not in the design. By Lemma 1.2,
S is not a defining set. '

Such a permutation can be found for all pairs of blocks and hence at least three
blocks are required for a defining set. Since the (6,3,2) design is unique up to
isomorphism (see, for instance, [7]) the proof is complete. O

We now consider the (11,5,2) design, which is also unique up to isomorphism.
We examine the particular design D obtained by cycling 13459 modulo 11 on
elements {0,1,2,...,9, 4}.

LEMMA 4.2. A defining set of an (11,5,2) design contains at least five blocks.

PROOF: Suppose there is a defining set consisting of four blocks. Two cases are
possible.

Case (i). There is an element common to all four blocks.

Without loss of generality, let the element 1 occur in each of the four blocks of
a defining set. It is immaterial which four blocks are chosen, as in any event we
know all five blocks containing 1, namely 13459, 46781, 84015, A1237 and 90126.
Then the remaining six blocks can be found in only two ways:

T3 = {2456 4,24830, 25879,40794,86943,50367};
Ty = {24570, 24849, 25836, 46 A03,80379,56 A79}.
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Hence such a set of four blocks cannot be a defining set.

Case (ii). No element is common to all four blocks.

We show that some element occurs three times. Without loss of generality, take
the first two blocks to be 13459 and 2456 A4, since any other two blocks can be taken
to these under the automorphism

flz) =ax+b, for a=3,9,5,4,1 and b€ Z7;.

1f 4 or 5 are not to occur three times, the remaining two blocks must be chosen from
68943, 90126 and A1237, resulting in each case in some element occurring three
times. We can assume that element 1 occurs in precisely three of the four blocks,
including 13459 and 46781. Then for each other choice of a block containing 1 and
a block not containing 1 we find an automorphism of the four blocks which is not
an automorphism of the full design D; for example, blocks 13459, 46781, 84015
and 2456 4 have automorphism (39) ¢ Aut(D).

It can be verified that every such set of four blocks has an antomorphism which
is a transposition, and thus cannot be a defining set of this design D. Cases (i)
and (i) give the lemma. [J

EXAMPLE 4.3. A smallest defining set of an (11,5,2) design contains five blocks.

PRrROOF: We refer to case (i) of Lemma 4.2. An (11,5,2) defining set can be ob-
tained by taking any four blocks containing 1, together with a single block of Ty;
for example, 13459, 46781, 84015, 41237 and 2456A. Together with Lemma 4.2,
the proof is complete. [J ‘
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