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ABSTRACT: A set S of edge-disjoint one-factors in a Graph G is
said to be maximal if there is no one-factor of G which is
edge-disjoint from S, and if the union of S is not all of G. Maximal
sets of one-factors of KZn have been investigated and until very
recently only results for particular cases have been obtained. In

this paper we present a new technique for solving the problem.
1. INTRODUCTION

-We consider graphs which are undirected, finite, loopless and
have no multiple edges. For the most part our notation and
terminology follows that of Bondy and Murty [1]. Thus G is a graph
with vertex set V(G), edge set E(G), v(G) vertices and £(G) edges. Kn
denotes the complete graph on n vertices and Kn n denotes the complete

s

bipartite graph with bipartitioning sets of size n and n.

A 1-factor of a graph G is a 1-regular spanning subgraph. A
1-factorization of G is a set of (pairwise) edge-disjoint one factors
which between them contain each edge of G. It is very well known (see
[31) that KZn and Kn,n have 1-factorizations for all n.

A set F of edge disjoint 1-factors in a graph G is said to be

maximal if there is no 1-factor which is edge-disjoint from F and if F
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is not all of G. Thus if we write F for the complement in G of the
union of members of F, then F is maximal if and only if F is a
non-empty graph with no l-factor. We call F the leave of F. Observe
that if G is regular, then F is regular. If F is d-regular, then F is
called a maximal set of deficiency d or simply a d-set. The existence
of d-sets in KZn for n > 2 was shown by Cousins and Wallis [4].
Caccetta and Wallis [2] established that 3-sets exist in K2n for
every 2n z 18. This was accomplished by first establishing properties
which reduced the problem to one of finding 3-sets in KZn for 16 = 2n
= 28, and then exhibiting the required 3-sets. In this paper we
generalize these methods. In particular, we prove that if K2n has a
d-set, then K has a d-set for each 0 = t = n - %(d + 1). We

4n-2t

apply this result to show that S5-sets exist in K 0 for every 2n = 22.

2
Recently, Rees and Wallis [6] solved the problem of determining

the spectrum of maximal sets of 1-factors in K Our approach is,

2n’
however, quite different and has the potential to yield a simpler and
more intuitive proof. Our main result is of interest in its own
right. ‘
2. PRELIMINARIES

In this section we discuss three results which we make use of in
the proof of our main theorem. A matching M in a graph G is a subset
of E(G) in which no two edges have a common vertex. We begin by

stating a lemma proved in Rees and Wallis [6].

Lemma 2.1. Let Km o be the complete bipartite graph with bipartition
(X,Y), where |X| = m, |Y| = n and m = n. Let Y1’Y2""’Yn be any
collection of m-subsets of Y such that each vertex y € Y is contained

in exactly m of the Yj’s. Then there is an edge-—decomposition of K

m,n
into matchings M1’ M2, e, Mn where for each j = 1,2,...,n Mj is a
matching with m edges from X to Yj' ]

The edge-chromatic number x’(G) of a graph G is the minimum



number of colours needed to colour the edges of G. Our next lemma is
a special case of a theorem of Folkman and Fulkerson [5]. The proof

we give was given to us in a personal communication by Rees.

Lemma 2.2. If G is a graph with c.k edges and ¢z %’ (G), then the edge

set of G admits a decomposition into c matchings, each with k edges.

Proof: Let & be the set of all proper c-colourings of G. Note that €

# ¢ since ¢ =z ¥’ (G). For K € €, define
c
n(K) = ‘z }ei - k|,
i=1

where e, is the number of edges in the ith matching (i.e. ith colour
class) of K, 1 =1,2,...,c.
Let
n, = min{n(K):X € &} ,
and let KO be a colouring for which n(Kb) =n. We will prove that n,
= 0, i.e. KO is a decomposition of G into ¢ matchings, each with k

edges. Suppose that this is not the case and n(Kb) > 0. Then there

is a matching M.1 for which e, = ]Mil is not k. Now since £(G) = ck,
there must be matchings M1 and Ng say, with e, = |M1] < k and e, =
M| > k.

2

Let H be the subgraph of G whose edge set is M1 V] Mg. Then H is
the disjoint union of cycles and paths. Since e2 > el, H must contain
as a component a path P of odd length which begins and ends with an

edge of Mz' Now switch the colours in P, i.e. those edges of P that

were coloured 1 get coloured 2 and vice-versa. Let us call the
matchings corresponding to these colour changes Ml’ and hg’. This
creates a new colouring KO’ of G with corresponding matchings
M‘/M‘,M,...,M. Furthermore,
1’2 '3 c

e’ = M| =e +1,

1 1 1
and

e’ = [M’'| =e -1

2 2 2



Now recalling that e < k and e, > k, we have

e’ - k| < le, - k|,
1 1
and

ey - k| < [e, - K|

2
Hence

n(Ko’) < n(Ko) »

and this contradicts the minimality of n(KO). It thus follows that

n= 0. This proves the lemma. u]
We conclude this section by stating a result of Wallis [7].

Lemma 2.3. A d-regular graph G with no l-factor and no odd-component

satisfies:

3d + 7, for odd d =z 3
v(G) = 3d + 4, for even d = B
22, for d = 4 .
No such G exists for d = 1 or 2. ' Jut

3. MAIN RESULT

Our main result is essentially a generalization of Theorems 4

and 5 of Caccetta and Wallis [2].

Theorem 3.1. Suppose for odd d there exists a d-set in Kzn' Then for

1 R .
each 0 =t = n - §(d + 1) there is a d-set in K4n—2t‘

Proof: We can write K4n-2t = K2n-2t \% K2n' Let X and Y denote the
graphs K2n—2t and K2n’ respectively. Now Y has a maximal set of (2n -
d - 1) 1-factors. Take 2t of these 1-factors and let H be the graph

formed by the union of these 1-factors.



Applying Lemma 2.2 (with ¢ = 2n and k = t) we decompose the
edge-set of H into 2n matchings Ml’Mz""’Mzn’ each with t edges. Let
‘{i denote the vertices of Y not saturated by the matching Mi' Note
that since H has regularity 2t, each vertex in Y will be contained in
exactly 2n-2t of the Yi’s. Furthermore, each Yi contains exactly
2n-2t vertices of Y.

Now we apply Lemma 2.1 to the subgraph K This yields

2n-2t,2n’
2n disjoint matchings Nl’Nz""’Nzn’ where N.1 joins the vertices of Y.1
to the vertices of X. Let
L, =M, uN, i=1,2,...,2n.
i i i
There remain in Y a set S of (2n - 1 - d) - 2t 1-factors from the

original maximal set on Y. Construct (2n - 1 - d) - 2t 1-factors on X
{(such a set exists since sz has a 1-factorization) and pair these off

with the 1-factors of S to form a set of (2n - 1 - d -~ 2t) 1-factors

L1’L2’""’L2n-1—d—2t' Then the set
F = {Li: i=1,2,...,2n} v {Ej; j=1,2,...,2n-1-d-2t}
forms a maximal set of 1-factors of deficiency d in K Note that

4n-2t°
the leave F of F consists of 2—components one of which is the leave

of the maximal set of 1-factors in KZn' This completes the proof of

the theorem. O

As a corollary we have:

Corollary: If K2n has a d-set, d odd, then for each even integer m =

2n + d + 1, Km has a d-set.

Proof: Suppose K2n has a d-set, d odd. Then by Theorem 3.1 there
exists a d-set in K , K ,
2n+d+1 2n+d+3

implies a d-set in K , K s
2n+2d+2 2n+2d+4

. K4n. Further a d-set in

., K . Now
4n+2d+2

K2n+d+1
since a d-set in th implies (Dirac’s Theorem) that d = n we have 2n +
2d + 2 = 4n + 2. Hence repeated applications of Theorem 3.1 will in
fact cover all even integers m z 2n + d + 1. This completes the proof

of the Corollary. u]



4. APPLICATION OF THEOREM 3.1

We now discuss the application of Theorem 3.1. First we
consider the existence of 3-sets in KZn' Since, by Lemma 2.3, the
smallest 3-regular graph without a 1-factor contains at least 16

vertices, K has no 3-set for 2n = 14. A 3-set in Kl‘3 was shown in

2n
[21. The above result implies that if we can find a 3-set in Km,
then we have a 3-set in K?n for every 2n z 16. This is the case as
shown in [Z]. We remark that the proof that Kzn has a 3-set for every

2n = 16 in [2] involved the construction of 3-sets in Kzn for 16 = 2n
= 28. Application of Theorem 3.1 eliminates the need to look at the

cases 20 = 2Zn = £8.

We now illustrate the work 1involved 1in establishing the

existence of d-sets, by consider the case d = 5.

Lemma 2.3 implies that BS-sets do not exist in K2n for 2n = 20.

So suppose 2n oz 22, We will exhibit 5-sets in K_, K and K_ .
22 24 26

Then the corollary to Theorem 3.1 implies the existence of 5H-sets in

K for every 2n z 22.
2n
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Consider l(22 with vertices labelled 1,2,...,8, A,B,... ,M Take

the 16 1-factors:

= 18 256 3D 4L JC 6H 7A 8I BF EK MG
= 152G 3E 41 8H BA 7J SF BK CM DL
= 19 2E 3L 4H 5D 6J 7G BK AF BM CI
= 1A 2H 3F 4M 5C 6l 7€ 8L 9D BG EJ
= 1B 2F 3K 4C 5] 6D 7L 8J 9M AH GE
= 1 29 3H 4J 5K B68F 7E 8G DI AM  BL
= 1D 2I 34 4F 5A 6G 7H 8C 89K BJ EL
= 1E  2C 3J 48 5B 68 7D Al LH MF  KG
1F 2L 3G 4E 53 6M 7C 8I AJ DK BH
= 16 2M 38 47 BSE 6B LI AK CH DF  9J
= 1H  2J 3A 4K 5G 6C 7™ 8F 9L BI DE
= 11 2A 36 4B 58 HE T7F LC SG DJ KM
= 1J 28 3C 48 5L DG 71 AB FE HM KB
= 1K 2B 79 4A SF 8L 3I 8E CG DH UM
= 1L 2k 3B 4D 5J BE 78 SH AG FC MI
= IM 2D 33 4G B5H 68 7B CK AL FJ EI

L e B I o e T I T I B I I B I B |
[T T~ S S S B SN S s S (NS T S B
[ X )

i

-
o

The leave of this set of 1-factors is given in Figure 4.1. Thus

we have a S-set in Kzz'

Figure 4.1

11



Consider K
24

the 18 1-factors:

Rl = 14 2J

R = 16 2D
2

R = 17 25
3

R = 1A 2N
4

R = 1B 20
5

R = 10 2K
6

R = 1D 2C
7

R = 1c  2F
8

R = 1E  2H
9

R = iL 2A
10

R = 16 2B
11

R = 1H 2L
12

R = 11 26
13

R = 1J 28
14

R = 1K 2M
18

R = iF  2C
i6

R = 1M 2E
17

R = iN 21

The leave of this

thus have a 5S-set in KM,

set of 1-factors is given

C
Figure 4.2
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D

with vertices labelled 1,2,...,9,
3 DI 5G B8F 7E NO SH
30 4B 58 9L 7C JN AE
3L 48 6M 9K AN BF CD
3M 47 53 6J 8C BL DH
3N 44 5L 68 7G 8A CH
31 4. 5B BC 7M 8D SA
3E  4F BI 6N 7H 8M 8C
3H 4G 50 6K TN 81 9B
3F 40 5J 6G 7K 8L 8D
37 4K 5B5C BE 8J SF BH
34 4J BH 6D 71 8K  GE
3J 4A BE 6B 7D 8G SN
39 4C S5O 70 8N AH BK
3K 41 5F B6A 7B 9C CO
CN 4E B5A ©6H 7F 80 8J
38 DO BL 7J 8l EM  AG
3¢ DK BN FL 7A 8B €0
3¢ 4D 5K BF 7L 8E 9M

in Figure 4.2.

AB,. ..

AL
FG
EH
EO
DJ
GJ
AK
AM
Al
DM
CL
CI
EL
DN
CL
EK
4H
HG

,0.

BM
HK
GI
FI
EI
EN
BJ

EJ

EN
GN
MO
M
FJ
EM
3D
4N
61
AJ

Take

CK
MI
Jo
GK
FK
FH
LO
DL
CM
10
FN
KO
GM
HL
BI
8H
cJ
BO
We
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Finally, consider K26 with vertices labelled

.,Q. A suitable 5-set is:

14 26 3@ SL 6J 7M 8C SH A0 BF DP EK
15 27 38 4C 6B 8A DK EQ FN GM HL IO
16 2A 3C 48 50 7D 8B EP FI GK HN JM
17 28 36 4B 5B5A 8 DE FH GJ IL KN MP
1A 2D 3B 47 51 6N 8F 9P CO EJ GL  HK
1B 2M 3H 4L 5K 6P 7A B8E 8J CQ DI FO
iC 2L 3J 4 Ss5p 6M 7TH 8I 9B AK DN EO
iD 2F 3N 4K S5E ©6H 7L 80 SA BI CM GP
1IE 2B 38 4A SN BL 7C DM SK FP GH IQ
iF 2Q 3D 4P 5J 60 7G¢ 8K 9I AB CL EN
iG 20 3P 4D 5B5C 6F 7J 8M SN BL AH EI
iIH 2E 3A 4N 5Q 66 70 8 9M BK CI DL
1I 2N 34 40 58 B6A 7E S89G BH CJ DQ FL
1J 2k 3G 4E 5B 6I 7P 8H 9Q AL CN DO
1K 2J 30 4Q SF 6D 7N 8L 9E AP BM CH
iL 2H 3E 41 5M 6K 7F 8Q SD AN CP BJ
iM 2P 3L 4F 5D 6Q T7I 8G S0 AJ BN CK
iIN 21 3K 4J BH BC 7Q 8D SF AG BP EM
10 2C 31 44 56 83 7B 8N AM EL DJ FK
1P 25 3F 4M DH BE 7K 8J 8L Al BO CG

NI
JP
LQ
0Q
MQ
GN
FQ
Ja
Jo
HM
KQ
FJ

FM
GI

EH
LG
PQ
NQ

The leave of this set is given in Figure 4.3.
4

N
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We have proved:

Theorem 4.1. There exists a S5-set in Kzn for every 2n z 22. [u]
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